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Abstract

Dependency Quantified Boolean Formulas (DQBF) are obtained by adding Henkin
quantifiers to Boolean formulas and have seen growing interest in the last years. Since de-
ciding DQBF is NExpTime-complete, efficient ways of solving it would have many practi-
cal applications. Still, there is only few work on solving this kind of formulas in practice. In
this paper, we present an instantiation-based technique to solve DQBF efficiently. Apart
from providing a theoretical foundation, we also propose a concrete implementation of our
algorithm. Finally, we give a detailed experimental analysis evaluating our prototype iDQ
on several DQBF as well as QBF benchmarks.

1 Introduction
With steadily increasing success of decision procedures for propositional formulas (SAT) and
Quantified Boolean Formulas (QBF), also interest in Dependency Quantified Boolean Formulas
(DQBF) has grown during the last years.

DQBF has first been described in [33] and comprises the set of propositional formulas
which are obtained by adding Henkin quantifiers [17] to Boolean logic. In contrast to QBF, the
dependencies of a variable in DQBF are explicitly specified instead of being implicitly defined
by the order of the quantifier prefix. This enables us to also use partial variable orders as part
of a formula instead of only allowing total ones.

As a result, problem descriptions in DQBF can possibly be exponentially more succinct.
While QBF is PSpace-complete [31], DQBF was shown to be NExpTime-complete [32, 33].
Aside from DQBF, many practical problems are known to be NExpTime-complete. This
includes, e.g., partial information non-cooperative games [32] or certain bit-vector logics [25, 38]
used in the context of Satisfiability Modulo Theories (SMT). More recently, also applications
in the area of equivalence for partial implementations [15, 16] and synthesis for fragments of
linear temporal logic [9] have been discussed and translations to DQBF have been proposed.

There has been theoretical work on succinct formalizations using DQBF and certain sub-
classes, e.g., DQBF-Horn has been shown to be solvable in polynomial time [7]. However, apart
from our previous work on adapting DPLL for DQBF [14] and a recent incomplete approach
(only allowing refutation of unsatisfiable formulas) [13], there have not been many attempts to
solve DQBF problems in practice nor actual implementations of decision procedures for DQBF.
As already pointed out in [14], our previous approach did not end up being very efficient. Apart
from this, formula expansion and transformations specific to QBF have been discussed in [1, 2],
which stayed only on the theoretical side but can yield an expansion-based DQBF solver similar
to those existing for QBF [4]. In [13], an expansion-based solver is also briefly mentioned. A
(not publicly available) expansion-based solver was used in [16]. Further, in [1, 2], it has been
conjectured that QBF solvers based on Skolemization [3] could easily be adapted for DQBF.
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However, the current implementation of the described QBF solver sKizzo [3] does not solely
use Skolemization but also relies on an additional top-level DPLL approach for larger formulas.
Adapting this kind of approach is not straightforward but requires special techniques as de-
scribed in our previous work [14] and might have a similar negative impact on the performance
of the resulting solver.

Effectively Propositional Logic (EPR) is another logic which is NExpTime-complete [26].
This implies that there exist polynomial reductions from DQBF to EPR and vice versa. Thus,
it is possible to use EPR solvers, e.g., iProver [22] being the currently most successful one,
to solve DQBF given some translation from DQBF to EPR. In [35], a translation from QBF
to EPR is described which can be extended to DQBF easily. However, since EPR solvers
in general have to reason with predicates and larger domains, solvers directly working on the
propositional level should have an advantage if a DQBF formalization of a problem is more
natural.

In the following, we present an instantiation-based approach to solving DQBF. Our ap-
proach is closely related to the so-called Inst-Gen calculus [23, 24], which can be considered as
the state-of-the-art decision procedure for EPR [22]. While DQBF can be translated to EPR,
we focus on applying the decision procedure directly on the given input logic. This results in a
simpler framework and an algorithm which is easy to implement and adapt. At the same time,
our approach can also be applied to QBF without further modifications. After defining some
preliminaries in Sect. 2 and giving related work in Sect. 3, we provide the theoretical foundation
in Sect. 4 and point out parallel features used in EPR solving. We also propose a concrete
implementation of our algorithm in Sect. 5, and provide detailed experiments, comparing our
prototype iDQ with state-of-the-art solvers on several DQBF as well as QBF benchmarks in
Sect. 6. It turns out that our implementation results in an efficient DQBF solver that works
on practical benchmarks and is even able to compete with QBF solvers on some problems. We
conclude and propose directions for future work in Sect. 7.

2 Preliminaries
Let V be a set of propositional variables. A literal l is a variable x ∈ V or its negation x.
For a given literal l, we write var(l) to reference the corresponding variable. A clause C is a
disjunction of literals. A propositional formula φ is in conjunctive normal form (CNF), if it is
a conjunction of clauses. Any DQBF can always be expressed as

ψ ≡ Q.φ ≡ ∀u1, . . . , um∃e1(u1,1, . . . , u1,k1
), . . . , en(un,1, . . . , un,kn

).φ

with Q being the quantifier prefix and φ being a propositional formula (matrix) in CNF
over the variables V := U ∪ E and U = {u1, . . . , um}, E = {e1, . . . , en}, ui,j ∈ U , ∀ i ∈
{1, . . . , n}, j ∈ {1, . . . , ki}. We refer to the elements of U and E as the universal variables and
existential variables of ψ, respectively. In DQBF, existential variables can always be placed
after all universal variables in the quantifier prefix, since the dependencies of a certain variable
are explicitly given and not implicitly defined by the order of the prefix (in contrast to QBF).

Given an existential variable ei, we use dep(ei) := {ui,1, . . . , ui,ki
} to denote its dependencies.

For universal variables u, we define dep(u) := ∅. We extend the notion of dependency to literals,
defining dep(l) := dep(var(l)) for any literal l. Obviously, any QBF ψqbf can be translated
to some ψdqbf in the specified form by moving all universal variables to the beginning and
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then setting dep(e) = {u ∈ U | u is before e in the quantifier prefix of ψqbf} for all existential
variables.

An assignment is a (partial) mapping α : V → {1, 0} from the variables of a formula to truth
values. To simplify the notation, we extend the definition of assignments to literals, clauses
and formulas in the natural way. In the rest of this paper, α(l), α(C), or α(F ) will denote the
truth value (under the assignment α) of a literal l, a clause C, or a formula F , respectively. An
assignment α to a formula F is satisfying, if and only if α(F ) = 1.

A propositional formula φ in CNF is satisfiable, if and only if all clauses in φ are satisfied by
at least one assignment α. We then call α a model of φ. In DQBF (as well as in QBF), a model
can not be expressed by a single assignment. Instead, we use Skolem functions to represent
solutions of a formula. A Skolem function fe : {1, 0}|dep(e)| → {1, 0} describes the evaluation
of an existential variable e under a given assignment to its dependencies. Let φsk denote the
formula obtained from φ by replacing all existential variables e by their Skolem function fe. A
DQBF ψ = Q.φ is satisfiable if and only if there exist Skolem functions fe1 , . . . , fen , so that
φsk is satisfied for all possible assignments to the universal variables of ψ.

Universal expansion is defined as the process of removing a universal variable u from a
formula ψ considering both its values separately. This can be done by removing all existential
variables e with u ∈ dep(e) and introducing two new existential variables eu=1, eu=0 with
dep(eu=1) = dep(eu=0) = dep(e)\{u}. Additionally, the matrix φ is replaced by φu=1 ∧ φu=0.
With φu=v, we describe the formula obtained from φ by replacing u by a constant v ∈ {1, 0}
and all occurrences of e with u ∈ dep(e) by eu=v. We can use universal expansion to reduce
any DQBF ψ to an equisatisfiable propositional formula. If the resulting propositional formula
is satisfiable, the Skolem functions of the original formula can be directly constructed from
the assignments to the propositional variables by setting fe(v1, . . . , vk) = eu1=v1,...,uk=vk . In
the following, we sometimes use the shorter notation φu and φu instead of φu=1 and φu=0,
respectively. We also extend this notation to clauses in the same way as we introduced it
for formulas and refer to this as a clause instance, in the sense the Inst-Gen calculus [23,
24] uses instantiation, applied to the natural encoding of (D)QBF into first-order logic [35].
Furthermore, for a given clause instance Cl1,...,lk , we define ctx(Cl1,...,lk) := {li | i = 1, . . . , k}.
We call this the context of an instantiation.

The unique identifiers for the new existential variables introduced in this way make sure that
the same existential variable is referred even if the individual clauses are considered separately.
Also, the identifiers and the dependencies of all existential variables introduced during universal
expansion are implicitly defined by the original quantifier prefix description. For example, for
the DQBF

∀u1, u2∃e1(u1), e2(u1, u2), e3(u1, u2) . (u1 ∨ e1) ∧ (u2 ∨ e2) ∧ (u1 ∨ u2 ∨ e3) (1)

we can now write equations of clause instances such as:

= (e1)u1 ∧ (u2 ∨ e2) ∧ (u1 ∨ u2 ∨ e3) = (e1)u1 ∧ (e2)u2 ∧ (u1 ∨ u2 ∨ e3)
= (e1)u1 ∧ (e2)u2 ∧ (u2 ∨ e3)u1 = (e1)u1 ∧ (e2)u2 ∧ (e3)u1u2

The last line is a succinct representation of the full universal expansion of the original formula
and minimal in the sense of our algorithm. We refer to each individual step as a local universal
expansion. Note that we immediately dropped all trivially satisfied clauses (due to ui = 1)
in each step. Also, all intermediate steps can be performed in arbitrary order, e.g., although
we started with expanding the first clause regarding u1, it is not necessary to expand all other
clauses on u1 before expanding some clauses on u2. Obviously, we could continue applying local
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universal expansion and obtain equivalent formulas of growing size:

(e1)u1
∧ (e2)u2

∧ (e3)u1u2
= (e1)u1

∧ (e2)u1u2
∧ (e2)u1u2

∧ (e3)u1u2

The last expression is maximal and of the same size as the full universal expansion of ψ. There
is no point in further expanding the first clause instance since u2 /∈ dep(e1), i.e. (e1)u1 =
(e1)u1u2

= (e1)u1u2
Obviously, if a clause instance Cl1,...,lk is part of a formula, we can always

add a more specific instance Cl1,...,lk,lk+1,...,lk′ without affecting satisfiability. The more specific
instance is actually subsumed by the original one, i.e. the full local universal expansion of the
new instance is a subset of the full local universal expansion of the less specific one. This fact
is crucial for the algorithm presented in Sect. 4.

EPR, known as the Bernays-Schönfinkel class, is a NExpTime-complete fragment of first-
order logic [26]. It consists of the set of first-order formulas that, written in prenex form, contain
(1) no function symbol of arity greater than 0, and (2) no existential quantifier within the scope
of a universal quantifier. After Skolemization, existential variables turn into constants (i.e.,
function symbols of arity 0). Consequently, an EPR atom can be defined as an expression of
the form p(t1, . . . , tn) where p is a predicate symbol of arity n and each ti is either a (universal)
variable or a constant.

In [35], a translation from QBF to EPR is proposed. The approach consists of three steps
and can be easily adapted to DQBF: (1) replace each existential variable e with its Skolem
function fe (which is in fact a predicate due to the Boolean domain), (2) replace each universal
variable u with p(u) where p is a fixed predicate, and (3) add the constraints p(1) and ¬p(0) to
the formula. For example, for the DQBF in Eqn. (1) the resulting EPR formula is

∀u1, u2 .
(
p(u1) ∨ fe1(u1)

)
∧
(
¬p(u2) ∨ fe2(u1, u2)

)
∧(

¬p(u1) ∨ p(u2) ∨ ¬fe3(u1, u2)
)
∧ p(1) ∧ ¬p(0)

3 Related Work
The concepts of instantiation and expansion that we defined in Sect. 2 are similar to the notation
used in [3], describing the solver sKizzo, which in particular shares similarities in the use of
clause instances (c.f. symbolic representation in [3]). But apart from slightly different notation,
there are three fundamental differences in the underlying algorithms: First, our method aims at
solving DQBF while sKizzo, as described, targets QBF solving. Second, sKizzo uses a top-
level QDPLL step, which cannot be applied to DQBF formulas without introducing additional
concepts as presented in our previous work [14]. Finally, the most important difference is that
sKizzo performs a full Skolemization after preprocessing, while our solver uses local extension
to iteratively generate a (potentially exponentially) more succinct formula which is sufficient to
prove (un)satisfiability of the original input, as described in Sect. 4.

Another similar notation and related work is proposed in [19, 20, 21]. Their solver
RAReQS [20] creates propositional abstractions and uses a CEGAR approach [10] for re-
finement. As we will discuss in Sect. 4, this is also what our solver does. However, the way
abstractions are generated and refined is different. One main difference can be found in the
expansion of universal variables. In contrast to sKizzo, both, RAReQS as well as our solver,
allow partial expansion in the sense that only φu=1 or φu=0 might be considered for some formula
φ containing u. Nevertheless, even the restricted expansion of universal variables in [19, 20, 21]
always applies to all clauses of a formula, whereas our approach uses the previously described
concept of local universal expansion, which allows to expand clauses individually. Further,
RAReQS is a QBF solver and cannot tackle DQBF formulas. Due to the usage of recursive
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1 F ′ := initInstantiation(F )
2 while true do
3 F ′′ = propositionalAbstraction(F ′)
4 (state, assignment) = checkSat(F ′′)
5 if (state == unsat ) then return unsat
6 if isValid(assignment , F, F ′) then return sat
7 F ′ = refineInstantiation(assignment , F, F ′)

Figure 1: Pseudo-code of a CEGAR loop as used in the Inst-Gen procedure [22, 23, 24].

calls depending on the order of the quantifier prefix, an extension to DQBF does not seem to
be straightforward.

Another solver that relies on abstraction refinement, is given in [38]. While they target
quantified bit-vector formulas with uninterpeted functions, QBF and DQBF of course can be
seen as a special case. To generate abstractions, they apply Skolemization and use templates
for functions. The effectiveness of their approach heavily relies on the right choice of templates,
which can be difficult for QBF and DQBF. Finally, another algorithm that has a similar
structure can be found in [34]. Again, their solver actually targets more general SMT formulas,
but could theoretically also be used for QBF. Since their approach expects an ordered quantifier
prefix, it cannot be directly applied to DQBF.

4 iDQ architecture

In this section, we present the iDQ architecture. It is based on the more general Inst-Gen
calculus [23, 24] for EPR as used in iProver [22], but reduced to the more specific case of
DQBF. Instead of dealing with predicates, we use the notion of clause instances as introduced
in Sect. 2. The Inst-Gen architecture is based on the CEGAR paradigm [10] and the pseudo-
code is given in Fig. 1.

For EPR, usually no specific initial instantiation is used, i.e., the formula is completely
uninstantiated. A propositional abstraction is then created by grounding the current formula
and can be solved by a SAT solver. If the SAT solver returns unsat, the original formula
is unsat too, since the ground formula is an overapproximation. On the other hand, if the
SAT solver returns sat, the resulting assignment has to be checked for consistency with the
EPR formula. In each propositional clause, we select a satisfying literal, determined by a
fixed selection function. If there is no pair of oppositely signed, selected literals, such that
the corresponding EPR literals can be unified, the solution is also valid for the original EPR
formula. If there are such pairs of literals, then we try to apply the following inference step to
each corresponding EPR clause: apply the most general unifier (MGU) to the clause and add
the result as a new clause. By checking if the new clause is already part of the formula w.r.t.
some redundancy concept, it is also possible that no new clause is added. The formula is then
called saturated and the current assignment is also valid for the input formula. Otherwise, the
calculus starts the next iteration.

Using the approach described in [35], any DQBF can be translated to EPR. All universal
variables u are embedded into EPR by introducing a predicate p and replacing each occurrence
of u by p(u). Additionally, the constraints p(1) and ¬p(0) are added to the formula. Obviously,
this implies that p(u) and ¬p(u) can never end up being the only satisfying literal of a clause.
If this was the case, unification with p(1) and ¬p(0) would be possible, respectively. As a
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result, the corresponding instance would be added to the formula and, from that point on, in
every loop iteration the SAT solver would immediately set the instantiated literal to 0 by unit
propagation.

Knowing that we deal with DQBF, this will always be the case. Therefore, we can directly
simplify the formula in the beginning by starting with a more specific initial instantiation.
For each clause, we only care about those assignments to the universal variables which do not
trivially satisfy the clause. In our notation, this initial instantiation is equal to the minimal
instantiation created by local universal expansion as described in Sect. 2. Consider the following
example:

ψ = ∀u1, u2∃e1(u1, u2), e2(u2) . (u1 ∨ e1) ∧ (u1 ∨ e1) ∧ (u1 ∨ u2 ∨ e1 ∨ e2)

We now create the initial set of clause instances, using the unique minimal instantiation that
removes all universal variables from the clauses:

(e1)u1
∧ (e1)u1

∧ (e1 ∨ e2)u1u2

We then create a propositional abstraction of the current clause instance set, by assuming
that all existential variables that do not occur in the same instantiation context can be different.
This means, for P denoting the power-set, we use a function m : E×P({l | var(l) ∈ U})→ V ′

for some new set of propositional variables V ′, and map each literal e in a clause instance C to
a propositional variable m(e, ctx(C)). We restrict m as follows:

m(e1, ctx(C1)) = m(e2, ctx(C2)) if and only if

e1 = e2,
{
l1 ∈ ctx(C1) | var(l1) ∈ dep(e1)

}
=

{
l2 ∈ ctx(C2) | var(l2) ∈ dep(e2)

}
Obviously, the propositional formula generated by this mapping is an overapproximation of the
current set of clause instances. It will often be the case that there is some kind of dependency
between different variables.

In our example, we get the following propositional formula:

(x1) ∧ (x1) ∧ (x2 ∨ x3)

Satisfiability can easily be checked by using any off-the-shelf SAT solver. In this specific
example, the propositional overapproximation is unsatisfiable. This implies that the original
formula is also unsatisfiable.

If, on the other hand, the propositional formula was satisfiable, we would need additional
reasoning. For this, consider a second example:

ψ = ∀u1, u2∃e1(u1, u2), e2(u2) . (u1 ∨ e1) ∧ (u2 ∨ e1 ∨ e2)

Again, we create the initial set of clause instances using the unique minimal instantiation that
removes all universal variables from the clauses:

(e1)u1
∧ (e1 ∨ e2)u2

The propositional overapproximation now looks as follows:

(x1) ∧ (x2 ∨ x3)

Note that the same existential variable e1 is mapped to two different variables x1, x2 because
it appears in different contexts. The SAT solver would now tell us that this abstraction is
satisfiable and return a satisfying assignment α, e.g., α = {x1 → 1, x2 → 0, x3 → 0}.
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We now check, whether α is a valid satisfying assignment for the current set of clause
instances. This is the case if and only if no pair of oppositely signed, selected (satisfying) literals
corresponds to the same existential variable in overlapping contexts. For EPR, this is exactly
what happens in the Inst-Gen calculus when there is a check on whether the corresponding
literals can be unified [22, 23, 24]. In the case that a satisfying assignment is valid for the
current set of clause instances, we know that the original DQBF is satisfiable. If, however, the
assignment is not valid, we refine the instantiation on the clauses that contain the conflicting
literals by adding new instances. Those instances are actually subsumed by the original ones
but lead to a different propositional abstraction by the definition of m. In the next step, the
propositional abstraction will automatically rule out this conflicting assignment.

In our latest example, α is indeed not a valid assignment for the current set of clause
instances: x1 and x2 correspond to e1, appear in overlapping contexts and, therefore, the
propositional variables cannot be assumed to be independent of each other. We therefore apply
the inference step of merging the two contexts and adding new clause instances. Now, the
resulting formula looks as follows:

(e1)u1
∧ (e1)u1u2

∧ (e1 ∨ e2)u2
∧ (e1 ∨ e2)u1u2

The propositional abstraction is given by:

(x1) ∧ (x2) ∧ (x3 ∨ x4) ∧ (x2 ∨ x4)

Note that e2 is mapped to the same variable x4 in both clause instances although it appears in a
different instantiation context. This is due to u1 /∈ dep(e2), which implies that (e2)u2

= (e2)u1u2
.

Again, this propositional formula is satisfiable and the SAT solver could return a satisfying
assignment α = {x1 → 1, x2 → 1, x3 → 0, x4 → 1}. However, this time we can pick a literal in
each clause so that no implicit dependencies are violated. Therefore, the algorithm terminates
and the original formula is known to be satisfiable.

Furthermore, also note that in our particular case, we could have directly applied local
universal expansion to our instances instead of adding a single more specific one, e.g., yielding
(e1)u1u2 ∧ (e1)u1u2 instead of (e1)u1 ∧ (e1)u1u2 . However, this can only be done without growth
in formula size, if there is exactly one additional literal in the new context of the instance, which
we would have added otherwise. Nevertheless, this is a possible DQBF-specific extension, which
is part of future work, and sometimes might reduce the number of loop iterations.

5 Implementation

In this section, we describe how we actually implemented the proposed algorithm and point
out where we can profit from DQBF-specific restrictions. For our solver, we use input files in
a format that is an extension of the QDIMACS format and which we call DQDIMACS. The only
difference to QDIMACS is the fact that we additionally allow partially ordered dependencies by
using expressions of the form d <int32> [<int32> ... <int32>] 0 in the quantifier prefix
description. This defines a new existential variable given by the first ID as integer which
(optionally) depends on a list of previously defined universal variables. All other quantifier
definitions using a and e are still interpreted in the same way as it is done in the QDIMACS
format and existential variables defined by using e are assumed to depend on all previously
defined universal variables as usual. In this way, DQDIMACS is easy to parse and a real extension
of QDIMACS. DQDIMACS is also the input format which we use in all our experiments in Sect. 6.
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Universal variables: u1, u2, u3
Existential variable: e(u1, u3) (D) dependency mask: 101
Input clause: (u2 ∨ u3 ∨ e)
(I) Initial instance: (e)u2u3

011 / 001
(C) e’s concrete context: u3 D & I1 = 001 / C1 & I2 = 001
(G) e’s ground context: u1u3 D = 101 / I2 = 001

(a) Dependencies and contexts.

(A) Instance with e: (e ∨ . . . )u1u2u3
111 / 011

(B) Instance with e: (e ∨ . . . )u2u3
011 / 001

(E) e’s concrete context: u1u3 101 / 001
(F) e’s concrete context: u3 001 / 001
Overlapping contexts? (E1 & F1) & E2 ?

= (E1 & F1) & F2
(N) New instance: (e ∨ . . . )u1u2u3

B1 | E1 = 111 / B2 | E2 = 001

Redundant? (1) ground B ?
= ground N (both are 111 / 001)

(2) B1 & N1 ?
= B1 and B1 & N2 ?

= B1 & B2

(b) Inference step and redundancy check.

Figure 2: Examples of using bit-vector representation for various calculations in iDQ.

After parsing the input, the data structures we use are similar to those of common SAT
solvers. The matrix of the original formula is saved as a list of clauses and a clause is saved as
a list of literals represented by integers. Additionally, the quantifier prefix is saved as a list of
variables and each variable has an ID, a quantifier type and, if it is an existential variable, a
bit-vector, called the dependency mask, representing the universal variables that it depends on.

We store a list of instances with each clause. An instance is defined by two bit-vectors, called
the context mask and the value mask, representing the universal variables that are assigned
by the context and the values they are assigned to, respectively. E.g., see instance (I) in
Fig. 2(a), where the first mask is the context mask and the second one is the value mask.
For the propositional abstraction, a propositional clause is also stored with each instance. All
propositional clauses are incrementally added to the underlying SAT solver, PicoSAT [5].

Initial Instantiation. Creating the initial instantiation is straightforward. When parsing
the clauses of the formula, universal literals l are not added to the literal list of the current
clause, but instead the corresponding bits in the context mask and the value mask are set
accordingly to represent that l is part of the context of the current instance; see (I) in Fig. 2(a).

Propositional Abstraction. Each occurrence of each existential variable is mapped to a
corresponding propositional variable. This can be done efficiently by using the bit-vectors that
are saved with each existential variable and each clause instance. Given an existential variable
e that occurs in an instance c, we calculate e’s concrete context that is to show which part of
c’s context is relevant for e. The concrete context can be calculated by applying bitwise and to
e’s dependency mask and c’s context mask, and another bitwise and with c’s value mask. This
is illustrated in Fig. 2(a) as the context mask (C1) being calculated from (D) and (I1), and the
value mask (C2) from (C1) and (I2).

We map the variable ID and the concrete context to a unique propositional variable. Ac-
cordingly, if two variable occurrences have the same ID (i.e., they represent the same existential
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variable) and their concrete contexts are equal, they are mapped to the same propositional vari-
able. In order to check whether we already introduced the corresponding propositional variable
in a previous step, we keep a hash table with all previously introduced propositional variables.

Grounding. As the Inst-Gen calculus [23, 24] suggests, before mapping an existential variable
e and its concrete context to a propositional variable, iDQ generates the grounding of this
context. Grounding is basically about assigning a concrete truth value, w.l.o.g. 0, to all the
universal variables which e depends on and which are not already assigned by the context. This
can easily be done by setting the context mask to e’s dependency mask and leaving the value
mask as it is, assuming that all bits in our bit-vectors are initialized to 0. Fig. 2(a) shows an
example, as setting (G1) to (D) and (G2) to (I2).

Active and Passive Instances. Similar to iProver’s architecture, clause instances are
separated into two sets, called active and passive. Active instances are the ones among which
all possible inference steps have been performed, modulo literal selection. Passive instances are
the ones which are waiting to participate in inferences. In iDQ, passive instances are stored in
a priority queue ordered by a given heuristic. In each solving iteration, iDQ dequeues a given
number of passive instances with the highest priority, and sets them active one by one, which
involves trying to apply an inference step with each active instance.

In the current implementation of iDQ, an active instance does not move back to the passive
instance set whenever its literal selection changes, as opposed to iProver. We rather apply
inference steps to it with each active instance, on the newly selected literal.

An inference step on two selected literals can easily be implemented, as illustrated in
Fig. 2(b). First, to check whether the concrete contexts of the literals are overlapping, we
apply bitwise and. Second, to calculate the context and value masks for a new instance, we
apply bitwise or to the masks representing the original instance and the ones representing the
literal from the other instance.

Heuristics. Two choices depend on some heuristics: (1) how to order the priority queue of
passive instances, and (2) how to select a satisfying literal in an active instance. We have been
experimenting with two types of heuristics, using different criteria for both choices.

One of the heuristics is inspired by iProver’s default heuristic, based on the lexicographical
combination of orders defined on given numerical/Boolean parameters. Similar to iProver’s
notation [24], we use the following combinations: (1) [-num_dep;+age;-num_symb] for the
priority queue of instances, and (2) [+sign;+ground;-num_dep;-num_symb] for literal selec-
tion. I.e., priority is given to instances with fewer unassigned dependencies, then to instances
generated at earlier iterations, and finally to instances with fewer symbols (0 or 1) assigned
to dependencies. The heuristic for literal selection can be interpreted in a similar way, where
positive and then ground literals are prioritized the most.

The other heuristic is inspired by SAT solving. It is based on the VSIDS scores [29] of
propositional variables used in the propositional abstraction. iDQ counts the occurrences of
those variables in the propositional clauses generated so far, and then, after each 50 iterations,
all the scores are divided by 2. Based on the VSIDS scores, (1) priority is given to the passive
instance with the highest average score of its literals, and (2) the literal with the highest score
is selected.

Redundancy Check. Redundancy elimination is crucial for the applicability of any calculus,
in order to avoid infinite runs and to obtain a smaller knowledge base. Due to the finite domain
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property, it is easy to obtain a sufficient, but not practical, redundancy check for both EPR
and DQBF, by simply checking the equality of clause instances, i.e., of context/value masks in
iDQ.

However, a practical redundancy check might be more complicated, e.g., iProver employs
dismatching constraints [24]. With iDQ, a practical check can be obtained more easily. iDQ
decides if a new instance c would not give any new information to the active instance set,
meaning that the propositional abstraction would stay the same and all inference steps with
c would also result in redundant instances. We consider c redundant if there exists an active
instance d of the same clause such that (1) the propositional abstractions of c and d are the
same, and (2) d subsumes c. Both checks can be done by bit-vector operations, as illustrated
in Fig. 2(b). Importantly, (2) requires to check if c’s context is a superset of d’s contexts.

6 Experimental Results
In this section, we report experiments1 with our solver. The source code, benchmarks, and
log files are available at http://fmv.jku.at/idq. We tested iDQ with two types of heuristics as
proposed in Sect. 5. iDQ and iDQvsids refer to the versions that employ the default heuristic and
the VSIDS-based heuristic, respectively. Lacking in publicly available, general-purpose DQBF
solvers (the solver DQBF2QBF in [13] can reason only with unsat formulas), we decided to
also compare iDQ against iProver (v0.8.1).

We also tested iDQ on QBF benchmarks, by exploiting the fact that QBF is a real frag-
ment of DQBF. By doing so, we could compare iDQ not only against iProver, but also
against genuine QBF solvers, like the QDPLL-based DepQBF [28] (v3.0), the Skolemization-
based sKizzo [3] (v0.8.2), the CEGAR-based RAReQS [20] (v1.1), and the expansion-based
Nenofex [27] (v1.0). For the sake of fair comparison, we did not run any preprocessor.

DQBF Benchmarks. We used the only publicly available DQBF benchmarks by Finkbeiner
and Tentrup [13]. All of them encode partial equivalence checking (PEC) problems, i.e., circuits
containing some “black boxes” compared against full circuits. This benchmark set includes the
benchmarks of the 3-bit arithmetic circuits adder and the 16-bit arbiter implementations bitcell
and lookahead from [11], and also the circuit family pec_xor from [16] about comparing the XOR
of input bits against a random Boolean function. We converted those benchmarks to DQDIMACS
format, and then ran iDQ on them. For iProver, we further converted the DQDIMACS instances
to EPR (TPTP CNF format) by using the translation from [35], which can be easily adapted
to DQBF.

Table 1 shows the results: the number of solved instances (#), the number of timeouts (TO),
and the average runtime. The number at the end of benchmark names shows the number of
black boxes in circuits. In most of the cases, iDQ outperforms iProver. iDQvsids performs even
better than iDQ on the bitcell benchmarks but worse on the lookahead and adder benchmarks.
The gap between the performance of iDQ and iProver is significant. On unsat instances,
DQBF2QBF generally is the fastest solver. However, the performance of iDQ sometimes
comes quite close, whereas DQBF2QBF cannot solve sat instances at all. Also note that the
benchmarks are biased in the way that most sets contain mainly unsat instances. Finally, we
think that one reason for the better performance of DQBF2QBF on unsat instances is the
better encoding of the original benchmarks and the overhead introduced by CNF translation.

1Setup: Vienna Scientific Cluster (VSC-2), AMD Opteron Magny Cours 6132HE CPUs, 2.2 GHz cores, 900
seconds time limit, 3800 MB memory limit.
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Preliminary results on simple preprocessing techniques show that this can lift the performance
of iDQ to come even closer to the one of DQBF2QBF.

#(sat/uns) TO time #(sat/uns) TO time #(sat/uns) TO time

bitcell_16_2 bitcell_16_4 bitcell_16_6
DQBF2QBF 98 (0/98) 2 18.6 98 (0/98) 2 18.8 97 (0/97) 3 27.8
iDQ 88 (2/86) 12 128.1 52 (0/52) 48 488.9 22 (0/22) 78 735.9
iDQvsids 97 (2/95) 3 39.2 75 (0/75) 25 255.9 36 (0/36) 64 592.0
iProver 82 (0/82) 18 248.6 34 (0/34) 66 684.5 7 (0/7) 93 851.7

lookahead_16_2 lookahead_16_4 lookahead_16_6
DQBF2QBF 97 (0/97) 3 27.7 97 (0/97) 3 27.7 96 (0/96) 4 36.6
iDQ 98 (3/95) 2 30.4 88 (0/88) 12 118.9 69 (0/69) 31 342.4
iDQvsids 93 (2/91) 7 68.1 62 (0/62) 38 383.0 20 (0/20) 80 729.9
iProver 67 (0/67) 33 351.8 32 (0/32) 68 656.3 6 (0/6) 94 862.9

adder_3_2 adder_3_4 adder_3_6
DQBF2QBF 94 (0/94) 6 54.8 89 (0/89) 11 99.8 74 (0/74) 26 234.6
iDQ 82 (1/81) 18 246.8 58 (0/58) 42 440.2 11 (0/11) 89 841.4
iDQvsids 43 (0/43) 57 546.3 21 (0/21) 79 734.0 6 (0/6) 94 863.9
iProver 86 (1/85) 14 221.6 54 (0/54) 46 538.2 5 (0/5) 95 876.9

pec_xor2 pec_xor3 pec_xor4
DQBF2QBF 49 (0/49) 51 459.4 77 (0/77) 23 207.5 99 (0/99) 1 10.6
iDQ 100 (51/49) .5 100 (23/77) .7 100 (1/99) 3.3
iDQvsids 100 (51/49) .5 100 (23/77) .6 100 (1/99) 2.2
iProver 100 (51/49) .5 100 (23/77) .9 100 (1/99) 2.8

Table 1: Results for DQBF PEC benchmarks

QBF Benchmarks. We used QBF Gallery 2013 benchmarks, from which we selected in-
stances whose size do not exceed 2 megabytes. In some cases, we randomly selected instances
from the resulting sets. Table 2 shows the results, including the number of memory outs (MO)
and the number of crashes (CR). Between parentheses after each benchmark name, the num-
ber of instances is shown. As expected, genuine QBF solvers outperform iDQ and iProver
on most benchmarks, although sKizzo and Nenofex terminate with memory out quite fre-
quently. On some instances, iProver and Nenofex crash. iDQ performs particularly well on
the benchmarks conformant-planning and planning-CTE, and reasonably well on sauer-reimer.
In general, the VSIDS-heuristic seems to be the slightly better choice.

7 Conclusion

In this paper, we presented an instantiation-based algorithm for solving DQBF, resulting in a
complete and at the same time practical DQBF solver.

On the theoretic side, we showed how successful techniques in EPR solving can be lifted
to the more specific DQBF case. We brought together related work on Skolemization with
the Inst-Gen calculus. On the other hand, we extended work on iProver by giving a simpler
framework. While our implementation is still a prototype, our experiments confirmed that the
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#(sat/uns) TO/MO time CR #(sat/uns) TO/MO time CR

conformant-planning (100) planning-CTE (57)
DepQBF 89 (19/70) 11/0 130.7 42 (26/16) 15/0 297.0
RAReQS 94 (17/77) 4/2 49.1 57 (35/22) 1.4
Nenofex 95 (19/76) 19.7 5 57 (35/22) 3.8
sKizzo 51 (11/40) 34/15 380.9 57 (35/22) 1.8
iDQ 95 (14/81) 5/0 81.9 57 (35/22) 6.2
iDQvsids 95 (14/81) 5/0 80.2 57 (35/22) 6.5
iProver 91 (14/77) 9/0 90.9 57 (35/22) 4.6

qbf-hardness (162) reduction-finding (100)
DepQBF 59 (12/47) 103/0 586.1 65 (34/31) 35/0 348.4
RAReQS 63 (12/51) 99/0 572.0 81 (41/40) 19/0 201.2
Nenofex 26 (12/14) 0/136 487.9 35 (19/16) 0/65 425.0
sKizzo 48 (12/36) 79/35 526.8 34 (19/15) 46/20 468.2
iDQ 44 (12/32) 118/0 665.0 30 (16/14) 70/0 635.4
iDQvsids 42 (12/30) 120/0 666.8 29 (15/14) 64/7 598.2
iProver 26 (12/14) 135/0 762.8 1 31 (18/13) 48/6 554.9 15

sauer-reimer (100) eval2012r2 (264)
DepQBF 50 (35/15) 50/0 457.3 90 (33/57) 174/0 610.8
RAReQS 33 (20/13) 0/67 248.2 67 (23/44) 162/35 626.7
Nenofex 18 (9/9) 0/82 564.7 54 (28/26) 7/200 519.0 3
sKizzo 18 (9/9) 43/39 614.8 89 (39/50) 128/47 521.7
iDQ 20 (8/12) 80/0 724.7 45 (15/30) 217/2 757.8
iDQvsids 27 (17/10) 73/0 658.7 51 (18/33) 178/35 682.2
iProver 19 (10/9) 76/5 725.8 54 (18/36) 178/30 672.7 2

Table 2: Results for QBF Gallery 2013 benchmarks

simpler structure of DQBF compared to the more general EPR, as well as the smaller formula
size compared to the full expansion, can have a positive impact on solver performance.

So far, our optimization compared to iProver was mainly on the implementation side using
more efficient data structures and operations tailored to the Boolean domain. Apart from the
possibility of applying local universal expansion as a special case of instantiation, looking into
more potential DQBF-specific benefits, especially on the heuristical level, is part of future
work. Specialized preprocessing techniques, e.g., related to those applied in sKizzo [3] or for
general QBF solvers [6], as well as removing dependencies of existential variables by analyzing
the propositional matrix [28], might also be a further interesting step into the direction of even
more efficient DQBF solving.

Another potential benefit of our solver could be related to providing certificates. Certificate
construction in QBF has seen increasing interest in recent research [8, 12, 18, 19, 21, 30, 36, 37].
While providing certificates is not implemented in our prototype yet, our architecture can easily
be extended by this feature. Obviously, Skolem functions for satisfying formulas can directly be
constructed out of a solution as discussed in Sect. 2. However, the more interesting contribution
might be for unsatisfiable formulas. As unsatisfiability of a formula is proven by a SAT solver
in combination with universal expansion, we can directly use the generated resolution proof for
refuting the initial DQBF input, similar to the approach described in [21]. Due to the iterative
refinement in the solving process, certificates (for unsatisfiability as well as satisfiability) might
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be rather small. Further shrinking could be possible by looking for unsatisfiable cores.
Finally, we were able to outperform even more specific QBF solvers on some benchmarks.

As an additional side-effect, we therefore hope to get new insights into QBF solving and maybe
even QBF solvers might profit from our techniques.
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