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MISCELLANEOUS EXTENSIONS OF FOUR-VALUED
EXPANSIONS OF BELNAP’S LOGIC

ALEXEJ P. PYNKO

Abstract. As a generic tool, we prove that the poset of (axiomatic) dis-
junctive [non-pseudo-axiomatic] extensions of the logic of a finite set M of

[(truth-non-empty)] finite disjunctive matrices is dual to the distributive lat-

tice of relative universal (positive) Horn model subclasses of the set S of [truth-
non-empty] consistent submatrices of members of M [(the duality preserving

axiomatic relative axiomatizations)]. If M consists of a single matrix with
equality determinant, relative universal Horn model subclasses of S are proved
constructively to be exactly lower cones of S that covers any four-valued expan-

sion L4 of Belnap’s four-valued logic B4. Moreover, we find algebraic criteria
of the [inferential] paracompleteness of the extension of L4 relatively axioma-

tized by the Resolution rule. We also find lattices of extensions of L4 satisfying

certain rules (in particular, non-paracomplete extensions) under certain con-
ditions covering many interesting four-valued expansions of B4 including both
itself and its bounded version (as well as their purely implicative expansions).

1. Introduction

The present paper is devoted to the issue of four-valued expansions of Belnap’s
useful (within both Computer Science and Artificial Intelligence) four-valued logic
B4 [2] going back to [9]. More specifically, any four-valued expansion of B4 being
defined by an expansion of a four-valued disjunctive matrix defining B4 itself, is
disjunctive as well, and so is the expansion of B4 as such. This makes the problem of
finding lattices of disjunctive extensions of four-valued expansions of B4, to which
the present paper is mainly (but not exclusively) devoted, rather acute within
Non-Classical Logic. In this connection, recall that disjunctivity is a fundamental
feature of the classical logic equally inherited by many non-classical ones. And what
is more, any axiomatic extension of any disjunctive finitary logic is disjunctive itself,
so the mentioned problem properly subsumes that of finding axiomatic extensions
of disjunctive finitary logics (in particular, those defined by finite classes of finite
disjunctive matrices like four-valued expansions of B4).

We start our study of it from elaborating generic tools of exploring the lattices
of disjunctive extensions (collectively with their finite relative axiomatizations and
finite matrix semantics) of the logics of finite classes of finite disjunctive matrices
— especially, those of such single matrices with equality determinant in the sense
of [11] covering expansions of the four-valued matrix defining B4, in which case the
lattices under consideration are found quite effectively, making the problem involved
a part of Applied Non-Classical Logic. These tools enable us not merely to find
quite effectively the distributive lattices of disjunctive extensions of four-valued
expansions of B4 but also to study special extensions like that which is relatively
axiomatized by the notorious Resolution rule going back to Automated Reasoning

2020 Mathematics Subject Classification. 03B22, 03B50, 03B53, 03G10, 06A15, 06D05, 06D30.
Key words and phrases. [disjunctive/classical/paraconsistent/paracomplete] logic|matrix, [ax-

iomatic] extension, Belnap’s four-valued logic, expansion, equality determinant.

1



2 A. P. PYNKO

(cf., e.g., [14]), whose particular meaning (within the framework involved) consists
in the fact that it axiomatizes Kleene’s three-valued logic [3] relatively to B4.

The rest of the paper is as follows. The exposition of the material of the paper is
entirely self-contained (of course, modulo very basic issues concerning Set Theory,
Lattice Theory, Universal Algebra, Model Theory and Mathematical Logic not
specified here explicitly, to be found, e.g., in standard mathematical handbooks
like [1] and [5]). Section 2 is a concise summary of mainly specific basic issues
underlying the paper including those presented in [13]. Section 3 is devoted to
generic tools concerning disjunctivity described in the Abstract. Next, Section 4
deals with main issues concerning four-valued expansions of B4, Subsection 4.1
being a concise summary of those presented in [13]. Then, in Subsection 4.3/4.2 we
find the lattice of disjunctive extensions of four-valued expansions of B4 together
with their finite relative axiomatizations and finite matrix semantics/study their
extensions by the Resolution rule. Further, in Subsection 4.4/4.5 we find the lattices
of non-paracomplete/Kleene extensions (viz., those of the least proper disjunctive
one) of expansions of B4 /obeying certain conditions.

2. Basic issues

Standard notations like img, dom, ker, hom, πi, Con, et. al., as well as related
notions are supposed to be clear.

2.1. Set-theoretical background. We follow the standard set-theoretical con-
vention, according to which natural numbers (including 0) are treated as finite
ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted
by ω. The proper class of all ordinals is denoted by ∞. Likewise, functions are
viewed as binary relations. In addition, singletons are often identified with their
unique elements, unless any confusion is possible.

Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞] is denoted by
℘[K](S). Next, S-tuples (viz., functions with domain S) are often written in either
sequence t̄ or vector ~t forms, its s-th component (viz., the value under argument
s), where s ∈ S, being written as either ts or ts. As usual, given two more sets A
and B, any relation between them is identified with the equally-denoted relation
between AS and BS defined point-wise. Further, elements of S∗ , (S0 ∪ S+),
where S+ , (

⋃
i∈(ω\1) S

i), are identified with ordinary finite tuples, the binary
concatenation operation on which being denoted by ∗, as usual. Then, any binary
operation � on S determines the equally-denoted mapping � : S+ → S as follows:
by induction on the length l = (dom ā) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

Furthermore, given any f : S → S, put f1 , f and f0 , ∆S , {〈s, s〉 | s ∈ S},
said to be diagonal. A subset T ⊆ S is said to be proper, if T 6= S. After all,
given any T ⊆ S/R ⊆ S2, an n-ary operation g on S, where n ∈ ω, is said to be
T -idempotent/R-[anti-]monotonic, provided, for all a ∈ T/b̄, c̄ ∈ (An ∩R), it holds
that g(n× {a}) = a/〈g(b̄), g(c̄)〉 ∈ R[−1], respectively.

Let A be a set. An anti-chain of any S ⊆ ℘(A) is any N ⊆ S such that
max(N) = N . Likewise, a lower cone of S is any L ⊆ S such that, for each
X ∈ L, (℘(X) ∩ S) ⊆ L. This is said to be generated by a G ⊆ L, whenever
L = GO

S , (S ∩
⋃
{℘(X) | X ∈ G}). (Clearly, in case A is finite, the mappings

N 7→ NO
S and L 7→ max(L) are inverse to one another bijections between the sets

of all antichains and lower cones of S.) A U ⊆ ℘(A) is said to be upward-directed,
provided, for every S ∈ ℘ω(U), there is some T ∈ U such that (

⋃
S) ⊆ T . A subset
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of ℘(A) is said to be inductive, whenever it is closed under unions of upward-
directed subsets. Further, any X ∈ T ⊆ ℘(A) is said to be K-meet-irreducible
(in/of T ), where K ⊆ ∞, provided it belongs to every U ∈ ℘K(T ) such that
(A ∩

⋂
U) = X (in which case X 6= A, whenever 0 ∈ K), the set of all them being

denoted by MIK(T ).1 A closure system over A is any C ⊆ ℘(A) such that, for
every S ⊆ C, it holds that (A ∩

⋂
S) ∈ C, in which case the poset 〈C,⊆ ∩ C2〉 to

be identified with C alone is a complete lattice with meet A ∩
⋂

. In that case,
any B ⊆ C is called a (closure) basis of C, provided C = {A ∩

⋂
S|S ⊆ B}. An

operator over A is any unary operation O on ℘(A). This is said to be (monotonic)
[idempotent] {transitive} 〈inductive/finitary/compact〉, provided, for all (B, )D ∈
℘(A)〈resp., any upward-directed U ⊆ ℘(A)〉, it holds that (O(B))[D]{O(O(D)} ⊆
O(D)〈O(

⋃
U) ⊆

⋃
O[U ]〉. A closure operator over A is any monotonic idempotent

transitive operator C over A, in which case imgC is a closure system over A,
determining C uniquely, because, for every closure basis B of imgC (including
imgC itself) and each X ⊆ A, it holds that C(X) = (A ∩

⋂
{Y ∈ B|X ⊆ Y }),

called dual to C and vice versa. (Clearly, C is inductive iff imgC is so.)

Remark 2.1. As a consequence of Zorn’s Lemma, according to which any inductive
non-empty set has a maximal element, given any inductive closure system C, MI(C)
is a closure basis of C, and so is MIK(C) ⊇ MI(C), where K ⊆ ∞. �

A [dual] Galois retraction between posets 〈P,5〉 and 〈Q,.〉 is any couple 〈f, g〉
of anti-monotonic [resp., monotonic] mappings f : P → Q and g : Q → P such
that (g ◦ f) = ∆P and (f ◦ g) ⊆ .[−1], in which case case the former poset is
said to be a [dual] Galois retract of the latter. (Galois retractions are exactly
Galois connections with injective/surjective left/right component; cf. [10] and [12].
Moreover, dual Galois retractions between 〈P,5〉 and 〈Q,.〉 are exactly Galois
retractions between 〈P,5〉 and 〈Q,.−1〉.)

2.2. Propositional logics and matrices. Unless otherwise specified, we deal
with a fixed but arbitrary signature Σ of connectives of finite arity to be treated
as function symbols. Given any α ∈ ℘∞\1(ω), Fmα

Σ denotes the absolutely free
Σ-algebra freely-generated by the set Vα , {xi | i ∈ α} of variables of rank α, the
corresponding superscript being traditionally omitted in denoting its operations, its
endomorphisms/elements of its carrier Fmα

Σ being called Σ-substitutions/-formulas
of rank α. (In general, the reservation “of rank α” is normally omitted, whenever
α = ω, unless any confusion is possible.) Then, a [finitary] Σ-rule is any couple
R = 〈Γ, ϕ〉, normally written as Γ ` ϕ, with the set of its premises Γ ∈ ℘[ω](Fmω

Σ)
and its conclusion ϕ ∈ Fmω

Σ, any Σ-rule of the form σ(R) , (σ[∆] ` σ(ψ)), where
σ ∈ hom(Fmω

Σ,Fmω
Σ), being called a substitutional Σ-instance of R. As usual, Σ-

axioms are Σ-rules without premises to be identified with their conclusions. Then,
an [axiomatic/finitary] Σ-calculus is any set of Σ-rules [without/with finitely many
premises].

Given a Σ-logic C (viz., a structural closure operator over Fmω
Σ in the sense

that imgC is closed under inverse Σ-substitutions), we sometimes write X `C Y ,
where X,Y ⊆ Fmω

Σ, for C(X) ⊇ Y as well as φ ≡C ψ, where φ, ψ ∈ Fmω
Σ, for

C(φ) = C(ψ), in which case ≡C becomes a binary relation on Fmω
Σ. Then, C is

said to satisfy a Σ-rule Γ ` ϕ, provided Γ `C ϕ, Σ-axioms satisfied in C being
referred to as theorems of C. Next, C is said to be non-pseudo-axiomatic, provided
(
⋂
k∈ω C(xk)) ⊆ C(∅) (the converse inclusion always holds by the monotonicity of

C). Likewise, it is said to be theorem-less, whenever it has no theorem. Further, C

1Within any context, any mention of K is normally omitted, whenever K = ∞. Likewise,
“finitely-/pairwise-” means “ω-/{2}-”, respectively.
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is said to be [inferentially] (in)consistent, if x1 6∈ (∈)C(∅[∪{x0}]). Furthermore, a
Σ-logic C ′ is said to be a [proper] extension of C, if C ⊆ [(]C ′, in which case C is
said to be a [proper] sublogic of C ′. Then, a[n] [axiomatic] Σ-calculus C is said to
axiomatize C ′ relatively to C, if C ′ is the least extension of C satisfying each rule in
C [in which case C ′ is said to be an axiomatic extension of C]. Finally, C is said to be
[maximally] o-paraconsistent, where o ∈ Σ is unary, provided x1 6∈ C({x0, ox0}) [and
C has no proper o-paraconsistent extension]. Likewise, C is said to be [inferentially]
maximal, whenever it is [inferentially] consistent and has no proper [inferentially]
consistent extension.

A Σ-rule Γ ` ϕ is said to be derivable in a finitary Σ-calculus C if there is a
C-derivation of it, i.e., a proof of ϕ (in the conventional proof-theoretical sense) by
means of axioms in Γ and rules in the set SIΣ(C) of all substitutional Σ-instances
of rules in C. The extension of the diagonal Σ-logic relatively axiomatized by C is
said to be axiomatized by C, in which case it is inductive and satisfies any Σ-rule
iff this is derivable in C. (Conversely, any inductive Σ-logic is axiomatized by the
set of all finitary Σ-rules satisfied in it.)

Remark 2.2. Given a Σ-logic C, we have the Σ-logic C+/−0, defined by C+/−0(X) ,
C(X), for all non-empty X ⊆ Fmω

Σ, and C+/−0(∅) , (∅/(
⋂
k∈ω C(xk))), being the

greatest/least theorem-less/non-pseudo-axiomatic sublogic/extension of C, called
the theorem-less/non-pseudo-axiomatic version of C. Then, the mappings C 7→
C+0 and C 7→ C−0 are inverse to one another isomorphisms between the posets of
all non-pseudo-axiomatic and of all theorem-less Σ-logics ordered by ⊆. �

As usual, Σ-matrices (cf. [4]) are treated as first-order model structures (viz.,
algebraic systems; cf. [5]) of the first-order signature Σ ∪ {D} with unary truth
predicate D, any finitary Σ-rule Γ ` φ being viewed as the first-order (either basic
or universal, depending upon the context) strict Horn formula (

∧
Γ) → φ under

the standard identification of any Σ-formula ψ with the first-order atomic formula
D(ψ).2 In this way, given any class M of Σ-matrices and any [axiomatic] finitary
Σ-calculus C, M ∩ Mod(C) is referred to as the relative (equality-free first-order)
universal [positive] (strict) Horn model subclass of M relatively axiomatized by C.

A Σ-matrix A, traditionally identified with the couple 〈A, DA〉, is said to be
n-valued/truth[-non]-empty/(in)consistent, where n ∈ ω, provided |A| = n/DA =
[6=]∅/DA 6= (=)A. It is said to be finite/generated by a B ⊆ A, whenever A is
so. Then, it is said to be K-generated, where K ⊆ ∞, whenever it is generated by
a B ∈ ℘K(A). Given any Σ′ ⊆ Σ, A is said to be a (Σ-)expansion of (A�Σ′) ,
〈A�Σ′, DA〉. (Any notation being specified for single Σ-matrices is supposed to be
extended to their classes member-wise.)

Let A and B be two Σ-matrices. A (strict) [surjective] homomorphism from A
[on]to B is any h ∈ hom(A,B) such that [h[A] = B and] DA ⊆ (=)h−1[DB], the set
of all them being denoted by hom[S]

(S)(A,B). Then, A is said to be a submatrix of B,

whenever ∆A ∈ homS(A,B), in which case we set (B�A) , A. Injective/bijective
strict homomorphisms from A to B are referred to as embeddings/isomorphisms
of/from A into/onto B, in case of existence of which A is said to be embeddable/is-
omorphic into/to B.

Let A be a Σ-matrix. Elements of Con(A) , {θ ∈ Con(A)|θ[DA] ⊆ DA} 3 ∆A

are called congruences of A. Given any θ ∈ Con(A), we have the quotient Σ-matrix
(A/θ) , 〈A/θ,DA/θ〉 by θ, in which case νθ ∈ homS

S(A,A/θ).

2In general, unless otherwise specified, [Σ-matrices are denoted by Calligraphic letters (pos-
sibly, with indices), their underlying] algebras [viz., algebra (i.e., Σ-) reducts] being denoted by

[corresponding] Fraktur letters (possibly, with [same] indices [if any]), their carriers (viz., under-
lying sets) being denoted by corresponding Italic letters (with same indices, if any).
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Recall the following well-known useful observations concerning the closure oper-
ator CnαM over Fmα

Σ, where α ∈ ℘∞\1(ω) and M a class of Σ-matrices, dual to the
closure system with basis {h−1[DA]|A ∈ M, h ∈ hom(Fmα

Σ,A)})}, in which case:

CnαM(X) = (Fmα
Σ ∩CnωM(X)),(2.1)

(hom[S]
S (A,B) 6= ∅) ⇒(CnαB(X) ⊆ [=]CnαA(X)),(2.2)

(homS(A,B) 6= ∅) ⇒(CnαA(∅) ⊆ CnαB(∅)),(2.3)

for all X ⊆ Fmα
Σ, where A and B are Σ-matrices.

Given a set I and an I-tuple A of Σ-matrices, the Σ-matrix (
∏
i∈I Ai)

, 〈
∏
i∈I Ai, (

∏
i∈I Ai) ∩

⋂
i∈I π

−1
i [DAi ]〉 is called the direct product of A (as usual,

when (I = 2)/((imgA) ⊆ {A}), where A is a Σ-matrix, (A0 × A1)/AI stands for
the direct product involved), any submatrix B of it being referred to as a subdirect
product of A, whenever, for each i ∈ I, πi[B] = Ai.

Lemma 2.3 (Finite Subdirect Product Lemma; cf. Lemma 2.7 of [13]). Let M be a
finite class of finite Σ-matrices and A a finitely-generated model of the logic of M.
Then, there are some congruence θ of A and some strict surjective homomorphism
from a subdirect product of a finite tuple constituted by consistent submatrices of
members of M onto A/θ.

A Σ-logic C is said to be K-defined by a class of Σ-matrices M, where K ⊆ ∞,
provided C(X) = CnωM(X), for all X ∈ ℘K(Fmω

Σ). The Σ-logic defined (viz., ∞-
defined) by M is called the one of M. (Due to [4], this is well known to be inductive,
whenever both M and all members of it are finite.) A Σ-logic is said to be n-valued,
where n ∈ ω, whenever it is defined by an n-valued Σ-matrix.

Remark 2.4. Since any rule with[out] premises is [not] true in any truth-empty
matrix, given any class M of Σ-matrices and any non-empty class S of truth-empty
Σ-matrices, the logic of S ∪M is the theorem-less version of the logic of M. �

Remark 2.5. Since formulas contain finitely many variables, the logic of any class
of truth-non-empty matrices is non-pseudo-axiomatic. �

A Σ-matrix A is said to be o-paraconsistent/, where o ∈ Σ is a unary, whenever
the logic of A is so. Likewise, A is said to be �-implicative/-disjunctive, where
� is a (possibly, secondary) binary connective of Σ, whenever, for all a, b ∈ A, it
holds that ((a �A b) ∈ DA) ⇔ ((a ∈ / 6∈ DA) ⇒ (b ∈ DA)), in which case it is
Y�-disjunctive, where (x0 Y� x1) , ((x0 � x1) � x1). Next, it is said to be a model of
a Σ-logic C, whenever the logic of A is an extension of C, the class of all models of
C being denoted by Mod(C).

Given a class M of Σ-matrices, the class of all (truth-non-empty) [consistent]
submatrices of members of M is denoted by S(∗)

[∗] (M), respectively. Likewise, the
class of all [sub]direct products of tuples (of cardinality ∈ K ⊆ ∞) constituted by
members of M is denoted by P[SD]

(K) (M).

Theorem 2.6 (cf. Theorem 2.8 of [13]). Let K and M be classes of Σ-matrices,
C the logic of M and C ′ an extension of C. Suppose both M and all members of
it are finite and PSD

ω (S∗(M)) ⊆ K (in particular, S(Pω(M)) ⊆ K). Then, C ′ is
finitely-defined by Mod(C ′) ∩ K.

Given any Σ-logic C and any Σ′ ⊆ Σ, in which case Fmα
Σ ⊆ Fmα

Σ′ and hom(Fmα
Σ′ ,

Fmα
Σ′) = {h�Fmα

Σ′ |h ∈ hom(Fmα
Σ,Fmα

Σ), h[Fmα
Σ′ ] ⊆ Fmα

Σ′}, for all α ∈ ℘∞\1(ω),
we have the Σ′-logic C ′, defined by C ′(X) , (Fmω

Σ′ ∩C(X)), for all X ⊆ Fmω
Σ′ ,

called the Σ′-fragment of C, in which case C is said to be a (Σ-)expansion of C ′.
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In that case, given also any class M of Σ-matrices defining C, C ′ is, in its turn,
defined by M�Σ′.

Proposition 2.7. Let C be a Σ-logic and M a finite class of finite Σ-matrices.
Suppose C if finitely-defined by M. Then, C is defined by M, that is, inductive.

Proof. In that case, C ′ , CnωM ⊆ C, for C ′ is inductive, while ≡C = ≡C′ . For
proving the converse inclusion, it suffices to prove that M ⊆ Mod(C). For consider
any A ∈ M, any Γ ⊆ Fmω

Σ, any ϕ ∈ C(Γ) and any h ∈ hom(Fmω
Σ,A) such that

h[Γ] ⊆ DA. Then, α , |A| ∈ (℘∞\1(ω) ∩ ω). Take any bijection e : Vα → A to be
extended to a g ∈ hom(Fmα

Σ,A). Then, e−1◦(h�Vω) is extended to a Σ-substitution
σ, in which case σ(ϕ) ∈ C(σ[Γ]), for C is structural, while σ[Γ ∪ {ϕ}] ⊆ Fmα

Σ. For
every B ∈ M, we have the equivalence relation θB , {〈a, b〉 ∈ B2 | (a ∈ DB) ⇔
(b ∈ DB)} on B, in which case B/θB is finite, for B is so. Moreover, as both α, M

and all members of the latter are finite, we have the finite set I , {〈h′,B〉 | B ∈
M, h′ ∈ hom(Fmα

Σ,B)}, in which case, for each i ∈ I, we set hi , π0(i), Bi , π1(i)
and θi , θBi . Then, by (2.1), we have θ , (≡C′ ∩ EqαΣ) = (EqαΣ ∩

⋂
i∈I h

−1
i [θi]), in

which case, for every i ∈ I, θ ⊆ h−1
i [θi] = ker(νθi

◦ hi), and so gi , (νθi
◦ hi ◦ ν−1

θ ) :
(Fmα

Σ /θ) → Bi. In this way, f : (Fmα
Σ /θ) → (

∏
i∈I Bi), a 7→ 〈gi(a)〉i∈I is injective,

for (ker f) = ((Fmα
Σ /θ)

2 ∩
⋂
i∈I(ker gi)) is diagonal. Hence, Fmα

Σ /θ is finite, for∏
i∈I Bi is so, and so is (σ[Γ]/θ) ⊆ (Fmα

Σ /θ). For each c ∈ (σ[Γ]/θ), choose
any φc ∈ (σ[Γ] ∩ ν−1

θ [{c}]) 6= ∅. Put ∆ , {φc | c ∈ (σ[Γ]/θ)} ∈ ℘ω(σ[Γ]).
Consider any ψ ∈ σ[Γ]. Then, ∆ 3 φ[ψ]θ ≡C ψ, in which case ψ ∈ C(∆), and
so σ[Γ] ⊆ C(∆). In this way, σ(ϕ) ∈ C(∆) = C ′(∆), for ∆ ∈ ℘ω(Fmω

Σ), so, by
(2.1), σ(ϕ) ∈ CnαM(∆) ⊆ CnαA(∆). Moreover, g[∆] ⊆ g[σ[Γ]] = h[Γ] ⊆ DA, and so
h(ϕ) = g(σ(ϕ)) ∈ DA, as required. �

2.2.1. Classical matrices and logics. A consistent two-valued Σ-matrix A is said to
be o-classical, where o is a unary connective of Σ, provided (a ∈ DA) ⇔ (oAa 6∈ DA),
for all a ∈ A, in which case it is truth-non-empty. Then, a Σ-logic is said to be o-
(sub)classical, whenever it is (a sublogic of) the logic of a o-classical Σ-matrix. Next,
a Σ-logic is said to be inferentially o-classical, whenever it is either o-classical or the
theorem-less version of a o-classical Σ-logic, in which case it is not o-paraconsistent.

2.2.2. Equality determinants. According to [11], an equality determinant for a Σ-
matrix A is any Υ ⊆ Fm1

Σ such that any a, b ∈ A are equal, whenever, for each
υ ∈ Υ, υA(a) ∈ DA iff υA(b) ∈ DA.

3. Disjunctivity

Fix any set A and any δ : A2 → A. Given any X,Y ⊆ A, set δ(X,Y ) , δ[X×Y ].
Then, a Z ⊆ A is said to be δ-disjunctive, provided, for all a, b ∈ A, it holds that
(({a, b} ∩ Z) 6= ∅) ⇔ (δ(a, b) ∈ Z), in which case, for all X,Y ⊆ A, we have
((X ⊆ Z)|(Y ⊆ Z)) ⇔ (δ(X,Y ) ⊆ Z). Next, a closure operator C over A is said to
be δ-multiplicative, provided

(3.1) δ(C(X), a) ⊆ C(δ(X, a)),

for all (X ∪{a}) ⊆ A, and δ-disjunctive, provided, for all a, b ∈ A and every Z ⊆ A,
it holds that

(3.2) C(Z ∪ {δ(a, b)}) = (C(Z ∪ {a}) ∩ C(Z ∪ {b})),

in which case the following clearly hold, by (3.2) with Z = ∅:

δ(a, b) ∈ C(a),(3.3)
δ(a, b) ∈ C(b),(3.4)
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a ∈ C(δ(a, a)),(3.5)
δ(b, a) ∈ C(δ(a, b)),(3.6)

C(δ(δ(a, b), c)) = C(δ(a, δ(b, c))),(3.7)

for all a, b, c ∈ A.

Lemma 3.1. Let C be a closure operator over A and B a closure basis of imgC.
Suppose each element of B is δ-disjunctive. Then,

(3.8) (C(Z ∪X) ∩ C(Z ∪ Y )) = C(Z ∪ δ(X,Y )),

for all X,Y, Z ⊆ A. In particular, C is both δ-disjunctive and δ-multiplicative.

Proof. First, for all a ∈ A, we have:

(a ∈ C(Z ∪X) ∩ C(Z ∪ Y ))

⇔ ∀W ∈ B : ((((Z ⊆W )&(X ⊆W )) ⇒ (a ∈W ))

&(((Z ⊆W )&(Y ⊆W )) ⇒ (a ∈W )))

⇔ ∀W ∈ B : (((Z ⊆W )&(X ⊆W |Y ⊆W )) ⇒ (a ∈W ))

⇔ ∀W ∈ B : (((Z ⊆W )&(δ(X,Y ) ⊆W )) ⇒ (a ∈W ))

⇔ (a ∈ C(Z ∪ δ(X,Y ))),

in which case (3.8) holds, and so immediately does its particular case (3.2). Finally,
applying (3.8) with Z = ∅ twice, we also get, for all (X ∪ {a}) ⊆ A, δ(C(X), a) ⊆
C(δ(C(X), a)) = (C(C(X)) ∩ C(a)) = (C(X) ∩ C(a)) = C(δ(X, a)), in which case
(3.1) holds, as required. �

Lemma 3.2. Let C be a δ-disjunctive closure operator over A and X ∈ (imgC).
Then, X is δ-disjunctive iff it is pair-wise-meet-irreducible in imgC, and so it is
finitely-meet-irreducible in imgC iff it is δ-disjunctive and proper.

Proof. First, assume X is not δ-disjunctive. Then, in view of (3.3) and (3.4), there
is some ~a ∈ (A\X)2, in which case, for each i ∈ 2, it holds that X 6= C(X∪{ai}) ∈
(imgC), such that δ(~a) ∈ X. Therefore, by (3.2), we have X = (

⋂
i∈2 C(X∪{ai})).

Hence, X is not pair-wise-meet-irreducible in imgC.
Conversely, assume X is not pair-wise-meet-irreducible in imgC. Then, there

is some ~Y ∈ ((imgC) \ {X})2 such that X = (
⋂
i∈2 Yi), in which case, for each

i ∈ 2, X ( Yi, so there is some ai ∈ (Yi \X) 6= ∅. In this way, by (3.2), we have
δ(~a) ∈ C(X ∪ {δ(~a)}) = (

⋂
i∈2 C(X ∪ {ai})) ⊆ (

⋂
i∈2 Yi) = X. Thus, X is not

δ-disjunctive, as required. �

3.1. Disjunctive logics and matrices. Fix any (possibly, secondary) binary con-
nective Y of Σ.

Remark 3.3. Given two Σ-matrices A and B with hom[S]
S (A,B) 6= ∅, A is Y-

disjunctive if[f] B is so. �

Corollary 3.4. Let α ∈ ℘∞\1(ω) and M a class of Y-disjunctive Σ-matrices.
Then, CnαM is both Y-disjunctive and Y-multiplicative.

Proof. For each A ∈ M and every h ∈ hom(Fmα
Σ,A), h−1[DA] is Y-disjunctive, by

Remark 3.3. Then, Lemma 3.1 completes the proof. �

Corollary 3.5. Let C be an inductive Σ-logic. Then, the following are equivalent:
(i) C is Y-disjunctive;
(ii) imgC has a basis consisting of Y-disjunctive sets;
(iii) (3.3), (3.5), (3.6) hold and C is Y-multiplicative;
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(iv) (3.3), (3.5), (3.6) hold and, for any axiomatization C of C, every (Γ ` φ) ∈
SIΣ(C) and each ψ ∈ Fmω

Σ, it holds that (φ Y ψ) ∈ C(Γ Y ψ).

Proof. First, (i)⇒(ii) is by Remark 2.1 and Lemma 3.2. Next, (ii)⇒(iii) is by
Lemma 3.1. Further, (iv) is a particular case of (iii). Then, the converse is proved
by induction on the length of C-derivations. Finally, assume (iii) holds, in which
case (3.4) holds by (3.3) and (3.6), and so does the inclusion from left to right in
(3.2), by (3.3) and (3.4). Conversely, consider any ϕ ∈ (C(Z ∪ {φ})∩C(Z ∪ {ψ})).
Then, by (3.3), (3.6) and (3.1), we have (ψ Y ϕ) ∈ C(Z ∪ {φ Y ψ}). Likewise, by
(3.3), (3.5) and (3.1), we also have ϕ ∈ C(Z ∪ {ψ Y ϕ}). Hence, we eventually get
ϕ ∈ C(Z ∪ {φ Y ψ}), in which case (3.2) holds, and so does (i), as required. �

Corollary 3.6. Any axiomatic extension of an inductive Y-disjunctive Σ-logic is
Y-disjunctive.

Proof. By Corollary 3.5(i)⇔(iv) and (3.3). �

3.1.1. Disjunctive extensions of logics defined by finite classes of finite disjunctive
matrices. Given a Σ-rule Γ ` φ and a Σ-formula ψ, put ((Γ ` φ) Y ψ) , ((Γ Y ψ) `
(φ Y ψ)). (This notation is naturally extended to Σ-calculi member-wise.)

Let σ+1 be the Σ-substitution extending [xi/xi+1]i∈ω.

Lemma 3.7. Let Γ ` φ be a Σ-rule and A a Y-disjunctive Σ-matrix. Then,
A ∈ Mod(σ+1(Γ ` φ) Y x0) iff A ∈ Mod(Γ ` φ).

Proof. The “if” part is by the strucuturality of CnωA and Corollary 3.4. Conversely,
assume A ∈ Mod(σ+1(Γ ` φ) Y x0). Consider an arbitrary h ∈ hom(Fmω,A) such
that h(φ) 6∈ DA. Let g ∈ hom(Fmω,A) extend [x0/h(φ);xi+1/h(xi)]i∈ω, in which
case (g ◦ σ+1) = h, and so, by the Y-disjunctivity of A, we have g(σ+1(φ) Y x0) =
(h(φ) YA h(φ)) 6∈ DA. Hence, there is some ψ ∈ Γ such that (h(ψ) YA h(φ)) =
g(σ+1(ψ) Y x0) 6∈ DA, in which case, by the Y-disjunctivity of A, we eventually get
h(ψ) 6∈ DA, and so A ∈ Mod(Γ ` φ), as required. �

Lemma 3.8. Let C be an inductive Y-disjunctive logic, C a finitary Σ-calculus and
A ⊆ C an axiomatic Σ-calculus. Then, the extension C ′ of C relatively axiomatized
by C′ , (A ∪ (σ+1[C \A] Y x0)) is Y-disjunctive.

Proof. Then, C being inductive, is axiomatized by a finitary Σ-calculus C′′, in
which case C ′ is axiomatized by the finitary Σ-calculus C′′∪C′, and so is inductive.
Moreover, C ′, being an extension of C, inherits (3.3), (3.5), (3.6) and (3.7) held for
C. Then, we prove the Y-disjunctivity of C ′ with applying Corollary 3.5(i)⇔(iv) to
both C and C ′. For consider any Σ-substitution σ and any ψ ∈ Fmω

Σ. First, consider
any φ ∈ A. Then, by the structurality of C ′ and (3.3), we have (σ(φ)Yψ) ∈ C ′(∅).
Now, consider any (Γ ` φ) ∈ (C \ A). Let ς be the Σ-substitution extending
(σ�(Vω \V1))∪ [x0/(σ(x0)Yψ)], in which case (ς ◦σ+1) = (σ ◦σ+1), and so, by (3.7)
and the structurality of C ′, we eventually get (σ[σ+1[Γ] Y x0] Y ψ) = ((ς[σ+1[Γ]] Y
σ(x0)) Y ψ) `C′ (ς[σ+1[Γ]] Y (σ(x0) Y ψ)) = ς[σ+1[Γ] Y x0] `C′ ς(σ+1(ϕ) Y x0) =
(ς(σ+1(ϕ)) Y (σ(x0) Yψ)) `C′ ((ς(σ+1(ϕ)) Yσ(x0)) Yψ) = (σ(σ+1(ϕ) Yx0) Yψ). �

Lemma 3.9. Let K be a finite class of consistent Y-disjunctive Σ-matrices. Then,
the set of all relative universal [positive] Horn model subclasses of K is a closure
system over K closed under unions, and so forms a finite distributive lattice.

Proof. Consider any set I of universal [positive] Horn model subclasses of K, in
which case it is finite, for K is so, and so there are some bijection e : n→ I, where
n , |I| ∈ ω, some C : n→ ℘(℘ω[∩1](Fmω

Σ)×Fmω
Σ) and some ᾱ : n→ ℘ω\1(ω\1) such

that, for every i ∈ n, e(i) = (K∩Mod(Ci)), Ci ⊆ (℘ω(Fmαi

Σ )×Fmαi

Σ ) and (αi∩αj) =
∅, for all j ∈ (n \ {i}). Then, we clearly have (K ∩Mod(

⋃
i∈n Ci)) = (K ∩ (

⋂
I)).
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Moreover, every member of (
⋃
I) ⊆ K[∗] is a model of C , {(

⋃
img(π0 ◦ R̄)) `

Y〈π1 ◦ R̄, x0〉 | R̄ ∈
∏

C} ∈ ℘(℘ω[∩1](Fmω
Σ) × Fmω

Σ). Conversely, consider any
A ∈ (K \ (

⋃
I)). Then, for every i ∈ n, A 6∈ e(i), in which case there are some

Ri ∈ Ci and some hi : αi → A such that A 6|= Ri[hi], and so ((
⋃
i∈n π0[Ri]) `

Y〈〈π1(Ri)〉i∈n, x0〉) ∈ C is not true inA under [x0/a]∪
⋃
i∈n hi, where a ∈ (A\DA) 6=

∅, for A is consistent. Thus, (
⋃
I) = (K ∩Mod(C)), as required. �

Theorem 3.10. Let M be a finite class of finite Y-disjunctive matrices, C the logic
of M and K[∗] , S[∗]

∗ (M). Then, the following hold:
(i) the mappings C ′ 7→ (Mod(C ′) ∩ K[∗]) and S 7→ CnωS are inverse to one an-

other dual isomorphisms between the poset of all Y-disjunctive [non-pseudo-
axiomatic] extensions of C and that of all relative universal Horn model sub-
classes of K[∗], the latter poset forming a finite distributive lattice, and so
doing the former one;

(ii) for any finitary Σ-calculus C, the following hold:
a) the extension of C relatively axiomatized by C, being Y-disjunctive [and

non-pseudo-axiomatic], corresponds to the relative universal Horn model
subclass of K[∗] relatively axiomatized by C;

b) [providing (C ∩ Fmω
Σ) 6= ∅] the relative universal Horn model subclass

of K[∗] relatively axiomatized by C corresponds to the Y-disjunctive [non-
pseudo-axiomatic] extension of C relatively axiomatized by (C ∩ Fmω

Σ) ∪
(σ+1[C \ Fmω

Σ] Y x0);
(iii) [providing every member of M is truth-non-empty] relative universal positive

Horn model subclasses of K[∗] correspond exactly to [non-pseudo-axiomatic]
axiomatic extensions of C, corresponding objects having same axiomatic rel-
ative axiomatizations and forming dual finite distributive lattices;

(iv) for any C ⊆ K[∗], S[∗]
∗ (C), being a relative universal Horn model subclass of

K[∗], corresponds to the logic of C.
In particular, Y-disjunctive extensions of C are inductive.

Proof. (i) First, the fact that (Mod(CnωS ) ∩ K[∗]) = S, where S is a relative uni-
versal Horn model subclass of K[∗], is immediate, while the fact that CnωS is a
Y-disjunctive [and non-pseudo-axiomatic] extension of C is by (2.2), Corollary
3.4 and Remark[s] 3.3 [and 2.5]. Now, consider any Y-disjunctive [non-pseudo-
axiomatic] extension C ′ of C. Then, we have the inductive Y-disjunctive [non-
pseudo-axiomatic] extension C ′′ of C (for C is inductive) defined as follows:
for every Z ⊆ Fmω

Σ, put C ′′(Z) , (
⋃
C ′[℘ω(Z)]). Consider any finitary Σ-rule

Γ ` ϕ such that ϕ 6∈ C ′′(Γ) [and Γ 6= ∅]. Then, by Corollary 3.5(i)⇒(ii), there
is some Y-disjunctive X ∈ (imgC ′′) ⊆ (imgC) such that Γ ⊆ X 63 ϕ. More-
over, as Γ is finite, there is some α ∈ (ω \1) ⊆ ℘∞\1(ω) such that (Γ∪{ϕ}) ⊆
Fmα

Σ, in which case, in view of (2.1), Γ ⊆ Y , (X ∩ Fmα
Σ) ∈ (img CnαM) is

both Y-disjunctive [and non-empty] as well as proper, for ϕ ∈ (Fmα
Σ \Y ). Fur-

thermore, by the structurality of C ′′, 〈Fmω
Σ, X〉 is a model of C ′′, and so is its

consistent [truth-non-empty] submatrix D , 〈Fmα
Σ, Y 〉, in view of (2.2). On

the other hand, by Corollary 3.4, CnαM is Y-disjunctive. Hence, by Lemma 3.2,
Y is finitely-meet-irreducible in img CnαM. And what is more, since both α, M

and all members of M are finite, B , {h−1[DA] | A ∈ M, h ∈ hom(Fmα
Σ,A)}

is a finite basis of img CnαM. Therefore, Y ∈ B, in which case there are
some A ∈ M and some h ∈ hom(Fmα

Σ,A) such that Y = h−1[DA], and so
h is a surjective strict homomorphism from D onto B , (A�(img h)). In
this way, by (2.2), B is a consistent [truth-non-empty] model of C ′′. Fi-
nally, as Γ ⊆ Y = h−1[DB] 63 ϕ, we conclude that Γ ` ϕ is not true in
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B ∈ S , (Mod(C ′′)∩K[∗]) under h. Thus, since both S and all members of it
are finite, in which case C ′′′ , CnωS is inductive [and non-pseudo-axiomatic,
by Remark 2.5], and so C ′′ = C ′′′, by Proposition 2.7, we eventually get
C ′ = C ′′′ = C ′′, as required, for, in that case, C ′, being inductive, is ax-
iomatized by a finitary Σ-calculus. In this way, Lemma 3.9 completes the
argument.

(ii) Consider any finitary Σ-calculus C. Then:
a) is immediate, in view of (2.2), due to which K ⊆ Mod(C).
b) Let C ′ be the extension of C relatively axiomatized by (C∩Fmω

Σ)∪(σ+1[C\
Fmω

Σ]Yx0). Then, by Lemma 3.8 with A = (C∩Fmω
Σ), C ′ is Y-disjunctive.

[And what is more, since A 6= ∅, C ′ is not theorem-less, and so is non-
pseudo-axiomatic.] Then, a) and Lemma 3.7 complete the argument.

(iii) is by (i), (ii), Lemma 3.9, Corollary 3.6 and Remark[s] 3.3 [and 2.5, due to
which C, being the axiomatic extension of C relatively axiomatized by the
axiomatic Σ-calculus ∅, is non-pseudo-axiomatic].

(iv) is by (2.2). �

As it is demonstrated by Theorem 4.24 below, (C ∩ Fmω
Σ) ∪ (σ+1[C \ Fmω

Σ] Y x0)
cannot be replaced by C in the item (ii)b) of Theorem 3.10, and so the reservations
“positive” and “axiomatic” cannot be omitted in its item (iii).

Let B be any (possibly, secondary) binary connective of Σ. By induction on
l = (dom φ̄) ∈ ω for any φ̄ ∈ (Fmω

Σ)∗ and any ψ ∈ Fmω
Σ, put:

(φ̄B ψ) ,

{
ψ if l = 0,
φ0 B (((φ̄�(l \ 1)) ◦ ((+1)�(l − 1))) B ψ) otherwise.

Remark 3.11. Let M be a finite class of finite B-implicative as well as Y-disjunctive
(in particular, Y = YB) Σ-matrices, in which case x0 B x0 is true in it, and so
every member of K[∗] , S[∗](M) is truth-non-empty. Then, any finitary Σ-rule
Γ ` ψ is true in any member of K iff φ̄ B ψ is so, where φ̄ : |Γ| → Γ is any
bijection, in which case any universal Horn model subclass of K∗ is positive, and
so Y-disjunctive extensions of the logic of M are exactly axiomatic ones, in view of
Theorem 3.10(iii). �

3.1.1.1. Disjunctive extensions of the logics of single finite disjunctive matrices with
equality determinant.

Lemma 3.12. Let A be a finite Y-disjunctive Σ-matrix with equality determinant
Υ, S ⊆ S(A) and B ∈ S∗(A). Suppose B 6∈ S(S). Then, there is some finitary
Σ-rule satisfied in S but is not satisfied in B.

Proof. In case S = ∅, the axiom ` x0 is satisfied in it but is not satisfied in any
consistent Σ-matrix (in particular, in B). Now, assume S 6= ∅, in which case
n , |S| ∈ (ω \1), and so there is a bijection C : n→ S. Consider any i ∈ n, in which
case B * Ci, and so there is some ai ∈ (B \ Ci) 6= ∅. Define a ∆i ∈ ℘ω(Fmω

Σ) and
a ψ̄i ∈ (Fmω

Σ)∗ as follows. Let m , |Ci| ∈ (ω \ 1). Take any bijection ~c : m → Ci.
By induction on any j ∈ (m+ 1), define a Γj ∈ ℘ω(Fm1

Σ) and a φ̄j ∈ (Fm1
Σ)∗ such

that, for all b ∈ (A \DA), it holds that A 6|= (Γj ` (Y〈φ̄j , xn〉)[x0/ai, xn/b], while,
for all k ∈ j and all a ∈ A, it holds that A |= (Γj ` (Y〈φ̄j , xn〉)[x0/ck, xn/a], as
follows. First, put Γj , ∅ and φ̄j , ∅, in case j = 0. Next, assume j > 0, in
which case (j− 1) ∈ m, and so cj−1 6= ai. Therefore, there is some υ ∈ Υ such that
υA(ai) ∈ DA iff υA(cj−1) 6∈ DA. Then, set:

〈Γj , φ̄j〉 ,


〈Γj−1, 〈φ̄j−1, υ〉〉 if υA(ai) 6∈ DA, υ 6∈ (img φ̄j−1),
〈Γj−1, φ̄

j−1〉 if υA(ai) 6∈ DA, υ ∈ (img φ̄j−1),
〈Γj−1 ∪ {υ}, φ̄j−1〉 otherwise.
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Finally, put ∆i , (Γm[x0/xi]) and ψ̄i , (φ̄m[x0/xi]). Let Ξ , (
⋃
i∈n ∆i), ξ̄ ,

(∗〈ψ̄i〉i∈n) and

ϕ ,

{
xn if ξ̄ = ∅,
Yξ̄ otherwise.

In this way, the finitary Σ-rule Ξ ` ϕ is true in S but is not true in B under
[xi/ai;xn/b]i∈n, where b ∈ (B \DA) 6= ∅, for B is consistent, as required. �

As an immediate consequence of (2.2) and Lemma 3.12, we get:

Theorem 3.13. Let M, C and K[∗] be as in Theorem 3.10. Suppose M = {A},
where A is a Σ-matrix with equality determinant. Then, relative universal Horn
model subclasses of K[∗] are exactly lower cones of it, under identification of its
members with the carriers of their underlying algebras.

In this way, Lemma 3.12 collectively with Theorems 3.10 and 3.13 provide an
effective procedure of finding the lattice of disjunctive extensions of the logic of
a finite disjunctive matrix with equality determinant collectively with their finite
relative axiomatizations and finite anti-chain matrix semantics. Concluding this
discussion, we should like to highlight that the effective procedure of finding relative
axiomatizations of disjunctive extensions to be extracted from the constructive
proof of Lemma 3.12 (actually subsuming that of Lemma 3.4 of [13], in view of
Remark 3.11, and in this way, collectively with Theorem 3.10, subsuming Theorem
3.5 therein) is definitely and obviously much less computationally complex than the
straightforward one of direct search among all finite sets of finitary rules.

4. Main issues

4.1. Preliminaries. We use the following standard notations going back to [2]:

t , 〈1, 1〉, f , 〈0, 0〉, b , 〈1, 0〉, n , 〈0, 1〉.

Also, put µ : 22 → 22, 〈a, b〉 7→ 〈b, a〉. Moreover, by v we denote the partial ordering
on 22 defined by (~a v ~b) def⇐⇒ ((a0 6 b0)&(b1 6 a1)), for all ~a,~b ∈ 22. Then, given
any B ⊆ 22, (v ∩ B2)-[anti-]monotonic n-ary operations on B, where n ∈ ω, are
referred to as [anti-]regular. (Clearly, µ is anti-regular.)

Throughout the rest of the paper, fix any signature Σ ⊇ Σ∼[01] , ({∼,∧,∨}[∪{⊥,
>}]) such that either {⊥,>} ⊆ Σ or ({⊥,>} ∩ Σ) = ∅ as well as any Σ-matrix
A being an expansion of the Σ∼[01]-matrix DM4[01] , 〈DM4[01], {b, t}〉, whose
underlying algebra DM4[01] is the diamond [bounded] De Morgan non-Boolean
lattice with carrier 22 and the partial ordering given by the natural one on 2 point-
wise, that defines the [bounded version of] Belnap’s logic B4[01], in which case
the logic C of A is a four-valued expansion of B4 (this exhausts all four-valued
expansions of B4, A being uniquely determined by C; cf. Theorems 4.7 and 4.8 of
[13]).

Remark 4.1 (cf. Example 2 of [11]). {x0,∼x0} is an equality determinant for the
∨-disjunctive A. �

Theorem 4.2 (cf. Theorems 4.20 and 4.21 of [13]). C is ∼-subclassical iff {f, t}
forms a subalgebra of A, in which case the logic CPC of A 6n6b , (A�{f, t}) is the
only ∼-classical extension of C and is an extension of any inferentially consistent
extension of C.

Proposition 4.3 (cf. Lemma 4.11 of [13]). C is theorem-less iff {n} forms a
subalgebra of A.
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The extension of C relatively axiomatized by the Excluded Middle law axiom

(4.1) x1 ∨ ∼x1

is denoted by CEM.
By A−n we denote the submatrix of A generated by {f, b, t}, the logic of it being

denoted by C−n. (Clearly, providing {f, b, t} forms a subalgebra of A, we have
A−n = A 6n , (A�{f, b, t}).)

Theorem 4.4 (cf. Theorem 4.29 of [13]). A−n is a model of any ∼-paraconsis-
tent extension of C. In particular, C−n is the greatest ∼-paraconsistent extension
of C, and so maximally ∼-paraconsistent, in which case an extension of C is ∼-
paraconsistent iff it is a sublogic of C−n.

Theorem 4.5 (cf. Theorem 4.31 of [13]). The following are equivalent:
(i) C is maximally ∼-paraconsistent;
(ii) CEM 6= C−n;
(iii) {f, b, t} does not form a subalgebra of A;
(iv) CEM is not ∼-paraconsistent;
(v) CEM is not maximally ∼-paraconsistent.

Next, a subalgebra B of A is said to be regular, whenever its operations are
so. (Clearly, every subalgebra of DM4[01] is regular.) Likewise, B is said to be
b-idempotent, where b ∈ B, whenever its operations are so. (Clearly, B is b-
idempotent iff {b} forms a subalgebra of it.) Finally, B is said to be specular,
whenever (µ�B) ∈ hom(B,A). (Clearly, every subalgebra of DM4[01] is specular.)

4.2. The resolutional extension. An extension C ′ of C is said to be (maximally)
[inferentially] paracomplete, provided (x0 ∨ ∼x0) 6∈ C ′(∅[∪{x1}]) (and C ′ has no
proper [inferentially] paracomplete extension). Then, a model of C is said to be
[inferentially] paracomplete, whenever the logic of it is so. Clearly, a paracomplete
extension/model of C is inferentially so iff it is non-pseudo-axiomatic/truth-non-
empty. Moreover, a submatrix B of A is paracomplete iff n ∈ B.

By C [EM+]R we denote the resolutional extension of C [EM], viz., the one relatively
axiomatized by the Resolution rule:

(4.2) {x1 ∨ x0,∼x1 ∨ x0} ` x0.

Put S[∗] 6b , {B ∈ S[∗](A) | b 6∈ B}.

Lemma 4.6. Let o and Y be (possibly, secondary) unary and binary connectives of
Σ, C ′ a Y-disjunctive Σ-logic and C ′′ an extension of C ′. Then,

(4.3) {x1 Y x0, ox1 Y x0} ` (x2 Y x0)

is satisfied in C ′′ iff

(4.4) {x1 Y x0, ox1 Y x0} ` x0

is so.

Proof. In that case, (3.4) and (3.5), being valid for C ′, remain so for C ′′. First,
assume (4.3) is satisfied in C ′′, in which case (4.3)[x2/x0] is so, in view of the
structurality of C ′′, and so is (4.4), in view of (3.5) and the transitivity of C ′′.
Conversely, the fact that (4.4) and (3.4) are satisfied in C ′′ implies the fact that
(4.3) is so, in view of the transitivity of C ′′, as required. �

Theorem 4.7. CEM+R is equal to CPC, if C is ∼-subclassical, and inconsistent,
otherwise.
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Proof. With using Remark 4.1, Theorems 3.10, 4.2 and Lemma 4.6. Then, CEM+R

is defined by the set S of all non-paracomplete members of S∗, 6b. In that case,
S = {A 6n6b}, if {f, t} forms a subalgebra of A, and S = ∅, otherwise, as required. �

By (2.2), Remarks 3.3, 4.1, Lemmas 3.7, 4.6 and Theorem 3.10, we also have:

Lemma 4.8. CR is defined by S[∗] 6b.

In addition, we also get:

Corollary 4.9. Suppose {f, n, t} forms a subalgebra of A. Then, CR is defined by
A 6b , (A�{f, n, t}).

Proof. Then, S6b = S(A 6b), and so (2.2) and Lemma 4.8 complete the argument. �

Theorem 4.10. The following are equivalent:
(i) CR is paracomplete;
(ii) there is some subalgebra B of A such that b 6∈ B 3 n;
(iii) the carrier of the subalgebra of A generated by {n} does not contain b;
(iv) there is no ϕ ∈ Fm1

Σ such that ϕA(n) = b.

Proof. In view of Lemma 4.8, CR is paracomplete iff S6b contains a paracomplete
matrix. Thus, (i)⇔(ii) holds. Finally, (ii)⇔(iii)⇔(iv) are immediate. �

Lemma 4.11. Let a ∈ {b, n}. Suppose {f, t}[∪{a}] forms a [regular] subalgebra
of A. Then, Ka

4 , {〈f, f〉, 〈a, f〉, 〈a, t〉, 〈t, t〉} forms a subalgebra of (A�{f, a, t}) ×
(A�{f, t}).

Proof. Let B be the subalgebra of (A�{f, a, t}) × (A�{f, t}) generated by Ka
4 . If

〈t, f〉 was in B, there would be some ϕ ∈ Fm4
Σ such that both ϕA(f, a, a, t) = t and

ϕA(f, f, t, t) = f, in which case, since (n/b) v / w b, for every b ∈ {f, t}, by the
regularity of A�{f, a, t}, we would get t v / w f. Therefore, as ∼A(f/t) = (t/f), we
conclude that B = Ka

4 , as required. �

Lemma 4.12. Let B ⊆ {b, n}. Suppose {f, t} ∪ B forms a specular subalgebra of
A. Then, {f, t} forms a subalgebra of A.

Proof. By contradiction. For suppose {f, t} does not form a subalgebra of A. In
that case, there are some ς ∈ Σ of some arity n ∈ ω and some ā ∈ {f, t}n such
that ςA(ā) ∈ B. Then, (µ ◦ ā) = ā, while µ(ςA(ā)) 6= ςA(ā), in which case µ 6∈
hom(A�({f, t} ∪B),A), and so this contradiction completes the argument. �

Theorem 4.13. Suppose {f, n, t} forms a regular specular subalgebra of A, in
which case {f, t} forms a subalgebra of A6b, in view of Lemma 4.12 with B = {n}
(in particular, Σ = Σ∼[01]). Then, an extension of C is inferentially paracomplete
iff it is a sublogic of CR. In particular, CR is maximally inferentially paracomplete.

Proof. In that case, by Corollary 4.9, CR is defined by the truth-non-empty para-
complete (and so inferentially paracomplete) Σ-matrix A 6b, in which case, in par-
ticular, any extension of C, being a sublogic of CR, is inferentially paracomplete.
Conversely, consider any inferentially paracomplete extension C ′ of C, in which
case (x0 ∨ ∼x0) 6∈ T , C ′(x1), while, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a
model of C ′ (in particular, of C), and so is its finitely-generated inferentially para-
complete submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.2). Hence, by Lemma

2.3, there are some set I, some I-tuple C constituted by submatrices of A, some
subdirect product D of C, in which case (D�Σ∼) is a De Morgan lattice, some
θ ∈ Con(B) and some g ∈ homS

S(D,B/θ), in which case, by (2.2), D is an infer-
entially paracomplete model of C ′, and so there are some a ∈ DD ⊆ {b, t}I and
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b = (∼Db∨D b) ∈ (D\DD) in which case {n, b, t}I 3 b 6= c , (a∨D b) ∈ DD, in view
of (3.3) and Remark 4.1. Put J , {i ∈ I | πi(b) = t}, K , {i ∈ I | πi(b) = n} 6= ∅,
for b 6∈ DD, and L , {i ∈ I | πi(b) = b 6= πi(c)}. Given any ā ∈ A4, put
(a0|a1|a2|a3) , ((J×{a0})∪(K×{a1})∪(L×{a2})∪((I\(J∪K∪L))×{a3})) ∈ AI .
Then, we have:

D 3 b = (t|n|b|b),(4.5)

D 3 ∼Db = (f|n|b|b),(4.6)

D 3 c = (t|t|t|b),(4.7)

D 3 ∼Dc = (f|f|f|b)(4.8)

Consider the following complementary cases:
(1) A is b-idempotent.

Then, we have the following complementary subcases:
(a) J = ∅.

Then, since K 6= ∅ = J , A6b is specular and {b} forms a subalgebra of
A, by (4.5), (4.7) and (4.8), we see that {〈x, (x|x|µ(x)|b)〉 | x ∈ A6b} is
an embedding of A 6b into D. Hence, by (2.2), A 6b is a model of C ′, for
D is so.

(b) J 6= ∅.
Then, taking Lemma 4.11 into account, since K 6= ∅ 6= J , A6b is spec-
ular and {b} forms a subalgebra of A, by (4.5), (4.6), (4.7) and (4.8),
we see that {〈〈x, y〉, (y|x|µ(x)|b)〉 | 〈x, y〉 ∈ Kn

4} is an embedding of
B , ((A6b×(A�{f, t}))�Kn

4) into D. Moreover, (π0�Kn
4) ∈ homS

S(B,A 6b).
Hence, by (2.2), A 6b is a model of C ′, for D is so.

(2) A is not b-idempotent.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case φA[{b, t}]
= {t} and ψA[{b, t}] = {f}, where φ , (x0 ∨ (ϕ ∨ ∼ϕ)) and ψ , ∼φ, and
so, by (4.7), we get:

D 3 ψD(c) = (f|f|f|f),(4.9)

D 3 φD(c) = (t|t|t|t).(4.10)

Consider the following complementary subcases:
(a) J = ∅,

Then, since K 6= ∅ = J and A6b is specular, by (4.5), (4.9) and (4.10),
we see that {〈x, (x|x|µ(x)|µ(x))〉 | x ∈ A6b} is an embedding of A 6b into
D. Hence, by (2.2), A 6b is a model of C ′, for D is so.

(b) J 6= ∅.
Then, taking Lemma 4.11 into account, since K 6= ∅ 6= J and A6b is
specular, by (4.5), (4.6), (4.9) and (4.10), we see that {〈〈x, y〉, (y|x|µ(x)
|µ(x))〉 | 〈x, y〉 ∈ Kn

4} is an embedding of B , ((A6b × (A�{f, t}))�Kn
4)

into D. Moreover, (π0�Kn
4) ∈ homS

S(B,A 6b). Hence, by (2.2), A 6b is a
model of C ′, for D is so.

Thus, in any case, A 6b is a model of C ′, and so C ′ ⊆ CR, as required. �

The logic of DM4[01], 6b/ 6n is known as [the bounded version of] Kleene’s three-
valued logic/Priest’s logic of paradox K3[01]/LP[01] (cf. [3]/both [6] and [8]).

Theorem 4.14. The following are equivalent:
(i) {f, n, t} does not form a subalgebra of A;
(ii) CR is inferentially either ∼-classical, if C is ∼-subclassical, or inconsistent,

otherwise;
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(iii) CR is not inferentially paracomplete;
(iv) the Σ∼-fragment of CR is not inferentially paracomplete;
(v) no Σ-expansion of K3 is an extension of C;
(vi) CR is not an expansion of K3.

Proof. First, (vi)⇒(i) is by Corollary 4.9.
Moreover, (vi) is a particular case of (v).
Next, assume (i) holds. We use Remark 2.4, Theorem 4.2, Proposition 4.3 and

Lemma 4.8 tacitly. Consider the following four exhaustive cases:

(1) C is both ∼-subclassical and not theorem-less.
Then, S∗, 6b = {A�{f, t}}, in which case CR is ∼-classical, and so inferentially
so.

(2) C is both theorem-less and ∼-subclassical.
Then, S∗, 6b = {A�{f, t},A�{n}}, in which case CR is inferentially∼-classical.

(3) C is neither ∼-subclassical nor theorem-less.
Then, S∗, 6b = ∅, in which case CR is inconsistent, and so inferentially so.

(4) C is both theorem-less and not ∼-subclassical.
Then, S∗, 6b = {A�{n}}, in which case CR is inferentially inconsistent.

Thus, (ii) holds.
Further, in view of Theorem 4.2, any inferentially ∼-classical extension of C is

not inferentially paracomplete. And what is more, any inferentially paracomplete
extension of C is clearly inferentially consistent. Hence, (ii)⇒(iii) holds.

Furthermore, (iii)⇒(iv) is by the fact that x0 ∨ ∼x0 is a Σ∼-formula.
Finally, by Remark 2.5, K3 is non-pseudo-axiomatic. Moreover, it is paracom-

plete, and so inferentially so. And what is more, (4.2), being satisfied in K3, is so
in any Σ-expansion of it. In this way, (iv)⇒(v) holds, as required. �

In this connection, it is remarkable that paracomplete analogues of the “max-
imality” items (i) and (v) of Theorem 4.5 do not hold, generally speaking, as it
ensues from the following generic counterexamples:

Example 4.15. Suppose C is ∼-subclassical, i.e., {f, t} forms a subalgebra of A (cf.
Theorem 4.2). Then, B , (A×(A�{f, t})) is truth-non-empty, non-∼-paraconsistent
and, by (2.3), paracomplete, for A is so, and so inferentially paracomplete, in which
case the logic of B is a proper inferentially paracomplete extension of C, in view of
(2.2). �

Example 4.16. Let A be a (possibly, secondary) binary connective of Σ. Sup-
pose both {f, t} and {f, n[/b], t} form subalgebras of A, in which case A�{f, t} is a
submatrix of A 6b, {A 6b}[∪{A 6n}] defining CR[∩CEM], in view of Corollary 4.9 [and
Theorem 4.5(ii)⇒(iii)], while CR satisfies x0 A x0, whereas {x0, x0 A x1} ` x1

is true in A�{f, t}, in which case B , (A 6b × (A�{f, t})) is truth-non-empty, para-
complete, in view of (2.3), for A 6b is so, and so inferentially paracomplete, and
a model of the rule {∼ix0 A ∼1−ix0 | i ∈ 2} ` (x0 ∨ ∼x0), in its turn, [being
also true in A 6n but] not being true in A 6b under [x0/n], and so, by (2.2), the logic
of {B}[∪{A 6n}] is a proper [both ∼-paraconsistent and] inferentially paracomplete
extension of CR[∩CEM]. �

Example 4.16 shows that the preconditions in the formulations of Theorem 4.13
and Corollary 4.26 cannot be omitted. Conversely, as it follows from Theorem 4.13
and Corollary 4.26, the condition of existence of implication A satisfying both the
Reflexivity axiom in A 6b and the Modus Ponens rule in A�{f, t} is essential within
Example 4.16 covering implicative expansions of B4 (cf. Subsection 5.3 of [13]).
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4.3. Disjunctive extensions. Next, C is said to be hereditary, provided (under
identification of submatrices of A with the underlying algebras of their carriers)

S∗∗(A) ⊇ S01 , S(DM4,01) = {{f, t, b, n}, {f, t, n}, {f, t, b}, {f, t}}

(the inverse inclusion always holds), in which case CEM[+R][= CPC] is defined by
A 6n[ 6b], in view of Theorem[s] 4.5 [resp., 4.2 and 4.7], while CR is defined by A 6b, in
view of Corollary 4.9. In particular, (the purely-implicative expansion of) B4[01]

is hereditary (cf. Subsection 5.3 of [13]). In this connection, note that, in view
of Theorem 4.1 of [7], ∨-disjunctive extensions of B4 are exactly De Morgan logics
in the sense of the reference [Pyn 95a] of [8]. In this way, the present subsection
incorporates the material announced therein advancing it much towards (mainly
but not exclusively, hereditary) expansions. Set S , S∗(DM4) = (S01 ∪ {{n}}).

Remark 4.17. The mappings C 7→ CO
S[01]

and C 7→ (C ∩ S[∗]
∗ (A)) form a dual Galois

retraction between the posets of all lower cones of S[∗]
∗ (A) and those of S[01], the

former/latter mapping preserving generating subsets/relative axiomatizations. �

There are exactly nine [six] lower cones of S[01] [but those containing {n}, viz.,
including C1, i.e., the last three ones]:

C4[01] , {{f, t, b, n}}O
S[01]

, Cb
3[01] , {{f, t, b}}O

S[01]
, Cn

3[01] , {{f, t, n}}O
S[01]

,

C3[01] , (Cb
3[01] ∪ Cn

3[01]), C2 , {{f, t}}, C0 , ∅,

C1 , {{n}}, Cb
3d1 , (Cb

3 ∪ C1), C2d1 , (C2 ∪ C1).

Those eight [five] ones, which are proper (viz., distinct from S[01] = C4[01]) are
relatively axiomatized by the following Σ∼-calculi (actually arisen according to the
constructive proof of Lemma 3.12, and so demonstrating its practical applicability),
respectively:

(4.1),(4.11)

{x0,∼x0} `x1,(4.12)

{x0,∼x0} `(x1 ∨ ∼x1),(4.13)

{(4.1), (4.12)},(4.14)

x0,(4.15)

x0 `x1,(4.16)

x0 `(x1 ∨ ∼x1),(4.17)

{(4.12), (4.17)}.(4.18)

And what is more, σ+1(4.16) ∨ x0 is equivalent to (4.16) under (3.3) and (3.5).
Likewise, σ+1(4.17) ∨ x0 is equivalent to (4.17) under (3.3), (3.4) and (3.5). By
IC we denote the inconsistent Σ-logic. Moreover, put PC[01] , BPC

4[01]. In this
way, taking Remarks 2.2, 2.4, 2.5, 4.17, Proposition 4.3, Theorems 3.10, 3.13 and
Lemma 4.6 into account, we eventually get:

Theorem 4.18. Suppose C is (not) hereditary and has a/no theorem. Then, ∨-
disjunctive [non-pseudo-axiomatic] extensions of C form (a Galois retract of) the
six/nine[six]-element non-chain distributive lattice depicted at Figure 1 (with not
necessarily distinct nodes) with solely solid circles/[with solely solid circles]. More-
over, those of them, whose relative axiomatizations are not given by upper indices,
are axiomatized relatively to C by the following calculi:

CEM ∩ CR : {x1 ∨ x0,∼x1 ∨ x0} ` ((x2 ∨ ∼x2) ∨ x0),(4.19)
IC : (4.15),(4.20)
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Figure 1. The lattice of ∨-disjunctive/Kleene extensions of here-
ditary/strongly hereditary C|B4{01} with solely large/non-lowest
circles.

IC+0 : (4.16),(4.21)

CEM
+0 : (4.17),(4.22)

CEM+R
+0 : {(4.17), (4.2)}.(4.23)

In view of Remark 3.11, Theorem 4.18 subsumes Corollary 5.4 of [13]. And what
is more, in view of Theorems 3.10, 3.13 and Remark 4.17, Theorem 4.18, being
immediately applicable to hereditary four-valued expansions of B4, is equally well-
applicable to non-hereditary ones, in which case the lattice depicted at Figure 1
is properly degenerated under the corresponding dual Galois retraction. For in-
stance, when dealing with any classically-negative (viz., Boolean) expansion CB4

(cf. Subsection 5.1 of [13]), S∗(A) becomes equal to {A}[∪{{f, t}}], in which
case ∨-disjunctive (viz., axiomatic; cf. Remark 3.11) extensions of CB4 form the
two[three]-element chain CB4 ( CB

EM(+R)
4 = CBR

4 = [CBPC
4 (]IC. Likewise,

given any bilattice expansion BL4 (cf. Subsection 5.2 of [13]), S∗(A) becomes
equal to {A}[∪{{n}}], in which case ∨-disjunctive extensions of BL4 form the two-
[three-]element chain BL4[( IC+0] ( IC = BLEM

4 with IC[+0] = BLR
4 , exhausting

all extensions of BL4, in view of its inferential maximality proved in Corollary 5.2
of [13].

It is remarkable that, in view of Theorem 5.2 of [7] providing an axiomatization
of B4 given by Definition 5.1 therein, Theorem 4.18 yields axiomatizations of all
∨-disjunctive extensions of B4 (in particular, of K3 relatively axiomatized by the
Resolution rule (4.2)).

4.4. Non-paracomplete extensions. By C [EM+]NP we denote the least non-∼-
paraconsistent extension of C [EM], viz., that which is relatively axiomatized by the
Ex Contradictione Quodlibet rule (4.12). Likewise, by C [EM+]MP we denote the
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extension of C [EM] relatively axiomatized by the rule:

(4.24) {x0,∼x0 ∨ x1} ` x1,

being nothing but Modus Ponens for the material implication ∼x0 ∨ x1. (Clearly,
it is a/an sublogic/extension of C [EM+](R/NP), in view of (3.3) held in C by its
∨-disjunctivity; cf. Remark 4.1 and Corollary 3.4.) An extension of C is said to be
Kleene, whenever it satisfies the rule (4.19).

Remark 4.19. Let C ′ be a Kleene extension of C (in particular, a non-paracomplete
one, in view of (3.3)). Then, we have {x0 ∨ x1,∼x0 ∨ x1} `C′ (∼(x0 ∨ x1) ∨ x1).
Therefore, in view of (3.3), C ′ satisfies (4.2) iff it satisfies (4.24). In particular,
CEM+R = CEM+MP. �

Theorem 4.20 (cf. Theorem 4.35 of [13]). Suppose C is [not] maximally ∼-
paraconsistent. Then, CEM+NP is consistent iff C is ∼-subclassical, in which case
CEM+NP is defined by [A 6n×]A 6n6b.

Lemma 4.21 (cf. Lemma 4.1 of [13]). Let I be a set, C ∈ S(A)I , B a submatrix of∏
i∈I Ci. Suppose {f, b, t} forms a regular subalgebra of A, {I×{d} | d ∈ {f, t}} ⊆ B

and, for each i ∈ I, Ci ⊆ {f, b, t}. Then, (B u 2) , ((B × {b}) ∪ {〈I × {d}, d〉 |
d ∈ {f, t}}) forms a subalgebra of B× (A�{f, b, t}), in which case π0�(B u 2) is a
surjective strict homomorphism from (B u 2) , ((B × (A�{f, b, t}))�(B u 2)) onto
B.

Lemma 4.22. Let C ′ be a Kleene (in particular, non-paracomplete, in view of
(3.3)) extension of C. Suppose C is not maximally ∼-paraconsistent, (4.24) is not
satisfied in C ′ and, for every ς ∈ Σ, ςA−n is either regular or both b-idempotent
and no more than binary. Then, C ′ is a sublogic of CEM+NP.

Proof. The case, when CEM+NP is inconsistent, is evident. Otherwise, by Theorems
4.2, 4.5 and 4.20, A−n = {f, b, t} and {f, t} form subalgebras of A, CEM+NP being
defined by the submatrix B , (A−n × (A�{f, t})) of A2, and so it suffices to prove
that B ∈ Mod(C ′). Then, by Theorem 2.6, there are some set I, some C ∈ S(A)I

and some subdirect product D ∈ Mod(C ′) ⊆ Mod(C) of it not being a model of
(4.24), in which case (D�Σ∼) is a De Morgan lattice. Therefore, there are some
a ∈ DD ⊆ {b, t}I , in which case ∼Da 6 a, and some b ∈ (D \ DA) such that
(∼Da ∨D b) ∈ DA, in which case (∼Da ∨D b) 6 (a ∨D b), and so (a ∨D b) ∈ DA.
Hence, by (4.19), (b∨D∼Db) = ((b∨D∼Db)∨D b) ∈ DA, in which case b ∈ {f, b, t}I .
Put J , {i ∈ I | πi(a) = b} ⊇ K , {i ∈ I | πi(b) = f} 6= ∅, for (∼Da ∨D b) ∈
DA and b 6∈ DA, and L , {i ∈ I | πi(b) = t}, Then, given any ~a ∈ A5, set
(a0|a1|a2|a3|a4) , ((((I \ (L ∪ K)) ∩ J) × {a0}) ∪ ((I \ (L ∪ J)) × {a1}) ∪ ((L \
J)× {a2}) ∪ ((L ∩ J)× {a3}) ∪ (K × {a4})) ∈ AI . In this way, a = (b|t|t|b|b) and
b = (b|b|t|t|f). Therefore, we have:

D 3 e , (a ∧D b) = (b|b|t|b|f),(4.25)

D 3 ∼De = (b|b|f|b|t),(4.26)

D 3 c , (e ∨D ∼Db) = (b|b|t|b|t),(4.27)

D 3 ∼Dc = (b|b|f|b|f),(4.28)

D 3 d , (e ∨D ∼Da) = (b|b|t|b|b),(4.29)

D 3 ∼Dd = (b|b|f|b|b).(4.30)

Consider the following complementary cases:
(1) L ⊆ J .

Then, given any ~a ∈ A4, set (a0|a1|a2|a3) , ((((I\(L∪K))∩J)×{a0})∪((I\
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J)×{a1})∪(L×{a2})∪(K×{a3})) ∈ AI . In this way, by (4.25), (4.27) and
(4.29), we have e = (b|b|b|f) ∈ D, c = (b|b|b|t) ∈ D and d = (b|b|b|b) ∈ D,
respectively. Consider the following complementary subcases:
(a) {b} forms a subalgebra of A−n.

Then, as K 6= ∅, {〈x, (b|b|b|x)〉 | x ∈ A−n} is an embedding of A−n

into D.
(b) {b} does not form a subalgebra of A−n.

Then, there is some ϕ ∈ Fm1
Σ such that ϕA(b) ∈ {f, t}, in which case

φA(b) = f and ψA(b) = t, where φ , (ϕ∧∼ϕ) and ψ , (ϕ∨∼ϕ), and
so both D 3 φD(d) = (f|f|f|f) and D 3 ψD(d) = (t|t|t|t). Hence, as
I ⊇ K 6= ∅, {〈x, (x|x|x|x)〉 | x ∈ A−n} is an embedding of A−n into
D.

Thus, anyway, A−n is embeddable into D, in which case, by (2.2), it is a
model of C ′, and so is B, for {f, t} forms a subalgebra of A−n.

(2) L * J .
Consider the following complementary subcases:
(a) either {b} forms a subalgebra of A−n or (((I \ (L∪K))∩J)∪ (I \ (L∪

J)) ∪ (L ∩ J)) = ∅.
Then, taking (4.25), (4.26), (4.27), (4.28), (4.29) and (4.30) into ac-
count, as K 6= ∅ 6= (L \ J), {〈〈x, y〉, (b|b|y|b|x)〉 | 〈x, y〉 ∈ B} is an
embedding of B into D, and so, by (2.2), B is a model of C ′.

(b) {b} does not form a subalgebra of A−n and (((I \ (L ∪K)) ∩ J) ∪ (I \
(L ∪ J)) ∪ (L ∩ J)) 6= ∅.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) ∈ {f, t}, in which case
ϕA[A−n] ⊆ {f, t}, for {f, t} forms a subalgebra of A, and so φA[A−n] =
{f} and ψA[A−n] = {t}, where φ , (ϕ ∧ ∼ϕ) and ψ , (ϕ ∨ ∼ϕ). In
this way,

D 3 φD(a) = (f|f|f|f|f),(4.31)

D 3 ψD(a) = (t|t|t|t|t).(4.32)

Consider the following complementary subsubcases:
(i) A−n is not regular.

Then, there are some ς ∈ Σ of arity n ∈ ω, some ~̄g ∈ (An−n)
2

and some i ∈ 2 such that gij v g1−i
j , for all j ∈ n, but ςA(ḡi) 6v

ςA(ḡ1−i), in which case w , ςA(ḡi) 6= x , ςA(ḡ1−i) ∈ {f, t}, and
so ḡi 6= ḡ1−i, in which case y , gij ∈ {f, t} and g1−i

j = b, for
some j ∈ n, in which case n 6= 0. Moreover, as ςA is not regular,
it is b-idempotent, in which case ḡ1−i 6= (n× {b}), while n 6 2,
and so n = 2 and z , g1−i

1−j 6= b. Therefore, gi1−j = z ∈ {f, t}, in
which case (z|z|z|z|z) ∈ D, in view of (4.31) and (4.32). More-
over, by (4.29) and (4.30), we also have (b|b|y|b|b) ∈ D. In
this way, D 3 f , ςD({〈j, (b|b|y|b|b)〉, 〈1− j, (z|z|z|z|z)〉}) =
(x|x|w|x|x). Consider the following complementary subsubsub-
cases:
(A) w = b.

Then, taking (4.30) into account, we have D 3 ((f ∧D

∼Df) ∨D ∼Dd) = (b|b|b|b|b). Hence, as I ⊇ K 6= ∅, by
(4.31) and (4.32), we see that {〈u, (u|u|u|u|u)〉 | u ∈ A−n}
is an embedding of A−n into D. Therefore, by (2.2), A−n

is a model of C ′, and so is B, for {f, t} forms a subalgebra
of A−n.
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(B) w 6= b.
Then, w ∈ {f, t} 3 x, so D ⊇ {f,∼Df} = {(f|f|t|f|f),
(t|t|f|t|t)}. Hence, as K 6= ∅ 6= (L \ J), by (4.29), (4.30),
(4.31) and (4.32), we see that {〈〈u, v〉, (u|u|v|u|u)〉 | 〈u, v〉 ∈
B} is an embedding of B into D. Therefore, by (2.2), B is
a model of C ′.

(ii) A−n is regular.
Then, Lemma 4.21, used tacitly throughout the rest of the proof,
is well-applicable to B. In this way, as (((I\(L∪K))∩J)∪(I\(L∪
J))∪ (L∩J)) 6= ∅ 6∈ {K,L\J}, by (4.25), (4.26), (4.27), (4.28),
(4.29), (4.30), (4.31) and (4.32), we see that {〈〈t, u, v〉, (v|v|u|v|
t)〉 | 〈t, u, v〉 ∈ (Bu2)} is an embedding of Bu2 into D, in which
case, by (2.2), it is a model of C ′, and so is its strict surjective
homomorphic image B. �

Lemma 4.23 (cf. Lemma 4.24 of [13]). Let B ∈ S(A). Suppose B ∪ {b} forms a
regular subalgebra of A. Then, any Σ-axiom, being true in B, is so in A�(B∪{b}).

Ii is remarkable that it is the gentle operation-wise condition that makes Lemma
4.22 well-applicable to the purely-implicative expansion of B4,01 despite of the fact
that, in that case, A is neither regular nor b-idempotent. This equally concerns the
following quite important definitive result:

Theorem 4.24 (cf. [10] for the case Σ = Σ∼). Suppose C is both ∼-subclassical
and not maximally ∼-paraconsistent, while, for every ς ∈ Σ, ςA−n is either regular
or both b-idempotent and no more than binary (in particular, Σ = Σ∼[01]). Then,
proper consistent extensions of CEM = C−n, that is defined by A 6n, form the two-
element chain CEM+NP ( CPC = CEM+(R/MP) and, providing A−n is regular (in
particular, Σ = Σ∼[01]), have same theorems as CEM has, and so are not axiomatic.

Proof. With using Theorems 4.2, 4.5, 4.7, 4.20, Remark 4.19 and Lemma 4.22.
For just notice that (4.24) is not true in the consistent truth-non-empty Σ-matrix
A−n × (A�{f, t}) under [x0/〈b, t〉, x1/〈f, t〉]. Finally, Lemma 4.23 with B = {f, t}
completes the argument. �

In view of Lemma 4.6, Theorem 4.24 shows that (C∩Fmω
Σ)∪ (σ+1[C\Fmω

Σ]Yx0)
cannot be replaced by C in the item (ii)b) of Theorem 3.10, when taking M = {A−n}
and C = {(4.12)}. After all, Theorem 4.24 subsumes some results of [12] concerning
purely implicative expansions of B4[01].

4.5. Kleene extensions. Next, C is said to be strongly hereditary, provided {f, n,
t} forms a regular specular subalgebra of A, in which case, since µ ◦ µ is diagonal,
{f, b, t} = µ[{f, n, t}] forms a specular subalgebra of A as well, and so a regular
one, for µ is anti-regular, while {f, t} forms a subalgebra of A, in view of Lemma
4.12 with B = {n}, and so C is hereditary. By symmetry between n and b, C is
strongly hereditary iff {f, b, t} forms a regular specular subalgebra of A, whenever
A is both regular and specular, while {f, (b/n), t} forms a subalgebra of A (in
particular, Σ = Σ∼[01]). According to the following example, equally showing that
the framework of strongly hereditary expansions of B4 is not at all exhausted by
solely definitional copies of B4[01], “whenever” cannot be replaced with “iff” above:
Example 4.25. If Σ , (Σ∼[01] ∪ {]}), where ] is binary, and ]A , ((∨A�(A2

6n ∪
A2
6b)) ∪ {〈〈n, b〉, t〉, 〈〈b, n〉, f/b〉}), C is strongly hereditary, and A is not specular, as

opposed to DM4[01], and non-regular/regular. �

From now on, C is supposed to be strongly hereditary. First, as an immediate
consequence of Theorems 4.4, 4.5 and 4.13, we have:
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Corollary 4.26. CEM ∩ CR is the greatest both inferentially paracomplete and
∼-paraconsistent extension of C.

Lemma 4.27. (A 6n ×A 6b) ∈ Mod(CEM+NP ∩ CR).

Proof. Since, by Theorem 4.20 and Corollary 4.9, CEM+NP ∩ CR is defined by
{A 6b,A 6n×A 6n6b}, A 6n× (A 6b×A 6n6b), being isomorphic to A 6b× (A 6n×A 6n6b), is a model
of CEM+NP ∩ CR, in view of (2.2). Moreover, by Lemma 4.11, (A 6b × A 6n6b)�Kn

4 is
a submatrix of A 6b × A 6n6b, in which case A 6n × ((A 6b × A 6n6b)�Kn

4) is a submatrix of
A 6n × (A 6b × A 6n6b), and so it is a model of CEM+NP ∩ CR, in view of (2.2). And
what is more, h , (π0�Kn

4) ∈ homS((A 6b × A 6n6b)�Kn
4 ,A 6b) is surjective, and so is

g : (A6n × Kn
4) → (A6n × A6b), 〈a, b〉 7→ 〈a, h(b)〉, belonging to homS(A 6n × ((A 6b ×

A 6n6b)�Kn
4),A 6n ×A 6b), as required, by (2.2). �

Lemma 4.28 (cf. Lemma 4.33 of [13]). Let I be a finite set and B a consistent
non-∼-paraconsistent submatrix of AI . Then, hom(B, 〈A, {t}〉) 6= ∅.

Corollary 4.29. Let I be a finite set, C ∈ {A 6b,A 6n}I , and B a consistent non-∼-
paraconsistent submatrix of

∏
i∈I Ci. Then, hom(B,A 6b) 6= ∅.

Proof. In that case, by Lemma 4.28, there is some h ∈ hom(B, 〈A, {t}〉) 6= ∅,
in which case D , (A�(img h)) satisfies the Kleene lattice identity ((x0 ∧ ∼x0) ∧
(x1 ∨ ∼x1)) ≈ (x0 ∧ ∼x0), for B does so, because both A6b and A6n do so, while
h ∈ hom(B,D) is surjective. Hence, {n, b} * D, for otherwise, the Kleene lattice
identity would not be true in D under [x0/n, x1/b]. Thus, D , (〈A, {t}〉�D) is a sub-
matrix of 〈A, {t}〉�A6a, for some a ∈ {n, b}, in which case h ∈ hom(B, 〈A, {t}〉�A6a),
and so the fact that µ�A6n is an isomorphism from 〈A, {t}〉�A6n onto (〈A, {t}〉�A6b) =
A 6b completes the argument. �

Corollary 4.30. CEM+NP ∩ CR is axiomatized by (4.12) relatively to CEM ∩ CR.

Proof. By Corollary 4.9 and Theorem 4.5 [resp., 4.20], CEM[+NP]∩CR is defined by
{A 6n[×A 6n6b],A 6b}. Consider any model B ∈ S(Pω({A 6b,A 6n})) of (4.12), in which case
there is some finite set I, some C ∈ {A 6b,A 6n}I such that B is a submatrix of

∏
i∈I Ci.

Put J , hom(B,A 6n × A 6b) and K , hom(B,A 6b). Consider any a ∈ (B \ DB), in
which case B is consistent and there is some i ∈ I such that πi(a) 6∈ DCi . Consider
the following complementary cases:

(1) Ci = A 6n.
Then, by Corollary 4.29, there is some h ∈ hom(B,A 6b) 6= ∅, in which case
g : B → (A6n ×A6b), a 7→ 〈πi(a), h(a)〉 is in J and g(a) 6∈ DA6n×A6b .

(2) Ci 6= A 6n, in which case Ci = A 6b, and so (πi�B) ∈ K.
In this way, f : B → ((A6n ×A6b)J ×AK6b ), a 7→ 〈〈j(a)〉j∈J , 〈k(a)〉k∈K〉 is in homS(B,
(A 6n ×A 6b)J ×AK6b ), and so (2.2), Theorem 2.6, Lemma 4.27 and the finiteness of A
complete the argument. �

By NP[01] we denote the extension of LP[01] relatively axiomatized by (4.12).

Theorem 4.31. Suppose C has a/no theorem. Then, Kleene [non-pseudo-axioma-
tic] extensions of C form the seven/eleven[seven]-element non-chain distributive
lattice depicted at Figure 1 with solely solid circles/[with solely solid circles], both
CEM+(NP|R) and {CEM+NP∩}CR/ as well as theorem-less proper ones being non-
axiomatic extensions of both CEM ∩ CR and C, and so CEM is the only proper
axiomatic extension of CEM ∩ CR and, providing either A is regular or C has no
theorem, of C. Moreover, those of them, which are neither ∨-disjunctive nor equal
to CEM+NP, are relatively axiomatized as follows:

CEM+NP ∩ CR by (4.12),
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CEM+NP
+0 by {(4.12), (4.17)},

others inheriting the above axiomatizations relatively to C with possible relacing
(4.2) by (4.24).

Proof. We use (2.2), Theorems 4.5, 4.7, 4.18, 4.20, 4.24, Proposition 4.3, Corollaries
3.6, 4.9, 4.30, Lemma 4.23 with B = A 6b and Remarks 2.2, 2.5 and 4.19 tacitly.
First, as CEM is ∼-paraconsistent, (CEM+NP ∩ CR)/CEM+NP

+0 /CEM+NP is distinct
from (CEM ∩ CR)/CEM

+0 /C
EM, respectively. Likewise, since (4.24) is not true in

A 6n×A 6n6b under [x0/〈b, t〉, x1/〈f, t〉], (CEM+NP ∩CR)/CEM+NP
+0 /CEM+NP is distinct

from CR/CEM+R
+0 /CEM+R, respectively. Finally, consider any [non-pseudo-axioma-

tic] extension C ′ of CEM ∩ CR and the following exhaustive cases [but (3) and
(4)]:

(1) IC ⊆ C ′.
Then, C ′ = IC.

(2) CPC ⊆ C ′ but IC * C ′.
Then, C ′ is consistent, and so inferentially consistent, for (4.1), being sat-
isfied in CPC, is so in its extension C ′, in which case, by Theorem 4.2,
C ′ = CPC.

(3) IC+0 ⊆ C ′ but CPC * C ′.
Then, IC, being an extension of CPC, is not a sublogic of C ′, so, by the
following claim, C ′ has no theorem:

Claim 4.32. Let C ′′ and C ′′′ be Σ-logics. Suppose C ′′ * C ′′′ is non-
pseudo-axiomatic and C ′′+0 ⊆ C ′′′. Then, C ′′′ has no theorem.

Proof. By contradiction. For suppose C ′′′ has a theorem, in which case it
is non-pseudo-axiomatic, and so, by Remark 2.2, we get C ′′ = (C ′′+0)−0 ⊆
C ′′′−0 = C ′′′. This contradiction completes the proof. �

In this way, as C ′−0 ⊆ IC, we have C ′ = (C ′−0)+0 ⊆ IC+0, and so we get
C ′ = IC+0.

(4) CPC
+0 ⊆ C ′ but both CPC * C ′ and IC+0 * C ′.

Then, by Claim 4.32, C ′ has no theorem. Moreover, (4.17), being satisfied
in CPC

+0 , is so in its extension C ′, in which case, by the structurality of C ′,
(x1 ∨ ∼x1) ∈ (

⋂
k∈ω C

′(xk)) = C ′−0(∅), and so CPC ⊆ C ′−0. On the other
hand, IC = (IC+0)−0 * C ′−0, so C ′−0 is consistent, and so inferentially
consistent, for it satisfies (4.1). Hence, by Theorem 4.2, C ′−0 = CPC. In
this way, C ′ = (C ′−0)+0 = CPC

+0 .
(5) (CPC

+0 [∪CPC]) * C ′ but CR ⊆ C ′.
Then, [(4.1), and so, in view of the non-pseudo-axiomaticity of C ′] (4.17)
is not satisfied in C ′, in which case, by Theorem 4.13, C ′ = CR.

(6) CR * C ′.
Then, (4.24) is not satisfied in C ′, in which case, by Lemma 4.22, C ′ ⊆
CEM+NP, and so we have the following exhaustive subcases [but (c) and
(d)]:
(a) CEM+NP ⊆ C ′.

Then, C ′ = CEM+NP.
(b) CEM+NP * C ′ but CEM ⊆ C ′.

Then, C ′ is ∼-paraconsistent, so, by Theorem 4.4, C ′ = CEM.
(c) CEM+NP

+0 ⊆ C ′ but CEM * C ′.
Then, CEM+NP * C ′, so, by Claim 4.32, C ′ has no theorem. Therefore,
CEM+NP = (CEM+NP

+0 )−0 ⊆ C ′−0, (CEM ∩ CR) = (CEM ∩ CR)−0 ⊆
C ′−0 and CR * C ′−0, for, otherwise, we would have CR = (CR)+0 ⊆
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(C ′−0)+0 = C ′. Hence, by Lemma 4.22, we have C ′−0 ⊆ CEM+NP, in
which case we get C ′ = (C ′−0)+0 ⊆ CEM+NP

+0 , and so C ′ = CEM+NP
+0 .

(d) CEM
+0 ⊆ C ′ but both CEM * C and CEM+NP

+0 * C ′.
Then, by Claim 4.32, C ′ has no theorem. Moreover, (4.17), being
satisfied in CEM

+0 , is so in C ′, in which case, by the structurality of
C ′, (x1 ∨ ∼x1) ∈ (

⋂
k∈ω C

′(xk)) = C ′−0(∅), and so CEM ⊆ C ′−0,
while (CEM ∩ CR) = (CEM ∩ CR)−0 ⊆ C ′−0. Also, CEM+NP =
(CEM+NP

+0 )−0 * C ′−0, so C ′−0 is ∼-paraconsistent. Hence, by Theo-
rem 4.4, C ′−0 = CEM. In this way, C ′ = (C ′−0)+0 = CEM

+0 .
(e) (CEM+NP ∩ CR) ⊆ C ′ but (CEM+NP

+0 [∪CEM+NP]) * C ′.
Then, [(4.1), and so, in view of the non-pseudo-axiomaticity of C ′]
(4.17) is not satisfied in C ′, in which case, by Theorem 4.13, C ′ =
(CEM+NP ∩ CR).

(f) (CEM+NP ∩ CR) * C ′ and (CEM
+0 [∪CEM]) * C ′.

Then, C ′ is both ∼-paraconsistent and inferentially paracomplete [in
view of the non-pseudo-axiomaticity of C ′], and so, by Corollary 4.26,
C ′ = (CEM ∩ CR). �

As an immediate consequence of Theorems 4.18 and 4.31, as opposed to both
CEM[∩CR] and C, we have:

Corollary 4.33. All extensions of CR are ∨-disjunctive.
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