
Deduction modulo theory

Gilles Dowek

Joint work with ∞



I. Comparing research projects in proof theory



Weaker vs. stronger systems

Several directions at the same time

Decomposing proofs, propositions, connectives, etc., into more

atomic objects

Weaker than Predicate logic: propositional logic, linear logic,

deep inference, equational logic, explicit substitution, etc.

Very little can be expressed in pure Predicate logic

Stronger than Predicate logic: axiomatic theories, modal logics,

types theories, Deduction modulo theory, etc.



Logical vs. theoretical systems

Stronger than pure Predicate logic

New logical constants, new rules: modal logics, simple type

theory, etc.

Function symbols and predicate symbols within Predicate logic,

axioms: arithmetic, set theory, simple type theory, etc.

Deduction modulo theory: theoretical rather than logical

A framework in which it is possible to define many theories



Axioms vs. reduction rules

A theory: a set of axioms reduction rules

Axioms jeopardize: cut free proofs end with an introduction rule,

witness property, search space of ⊥ empty, etc.

0 = 0 −→ ⊤

S(x) = 0 −→ ⊥

0 = S(y) −→ ⊥

S(x) = S(y) −→ x = y

Prove 4 = 4, Peano third and fourth axiom



Deduction vs. computation

if A −→∗ ⊤, then A provable

Not the converse

Indeed, reducibility to ⊤ decidable, not provability

On the opposite

If A −→∗ ⊤, proof of A just a computation (not a genuine

deduction)



The origins of Deduction modulo theory

Automated theorem proving: equational unification (A, β)

Definitional equality in Martin-Löf’s type theory

Prawitz’ Folding and unfolding rules



II. Problems and results: an overview



Expressing theories in Deduction modulo theories

Specific theories: Simple type theory, Arithmetic, Set theory, ...

General method for propositional logic, predicate logic:

consistency implies cut elimination (classical case), but not

optimal efficiency

Partial methods for constructive logic (consistency not enough,

what about consistency + witness?)



Automated theorem proving

Resolution modulo theory: too complex: clauses rewrite to

non-clausal propositions

Polarized resolution modulo theory (and as a restriction of

Resolution, SOS, SR)

Ordered polarized resolution modulo theory (iProver modulo)

Tableaux modulo theory: very good results for class theory

(second-order logic, B-set theory)

Super Zenon and Zenon modulo



Models

Very close to Predicate logic: same models

Validity of rewrite rules: A ≡ B implies JAKφ = JBKφ

Extension to models valued in Boolean / Heyting algebras

But: if ⊢ A ⇔ B, then JAKφ = JBKφ as well

Too extensional, drop antisymmetry

if ⊢ A ⇔ B, then JAKφ ≤ JBKφ and JAKφ ≥ JBKφ

if A ≡ B, then JAKφ = JBKφ

Many theories have a model in any pre-Heyting algebra



Cut elimination

Depends on the theory: P −→ P ⇒ Q no,

P −→ Q ⇒ P yes

General criterion: a model valued in the (pre-Heyting) algebra of

Reducibility candidates

Only the construction of the model is specific



Dependent types

Algorithmic interpretation of proofs (Curry-de Bruijn-Howard

isomorphism): usually for specific theories (λΠ-calculus, Gödel’s

system T , Martin-Löf’s type theory, Girard’s system F , Calculus

of (Inductive) Constructions, ...)

λΠ-calculus + rewriting: all theories (∅, Arithmetic, Simple type

theory, Set theory, ...)

Decouple algorithmic interpretation of proofs (λΠ-calculus) from

the choice of a theory (rewriting)

Embedding Pure Type Systems in the λΠ-calculus modulo theory



III. Focus on Dedukti



An proof-checker for λΠ-modulo

Just a proof-checker (no tactics, program extraction, user

interface, ...)

A suite of programs rather than a monolithic system

Difficult to implement : compile reduction (lambda-calculus +

arbitrary rewrite rules), but now an efficient implementation

Download it and play with it



Why is it called Dedukti?

λΠ-modulo theory: A logical framework (STT, PTS, etc.)

Importing proofs from other systems

Full library of HOL

Coq, Focalize: under progress

First-order proofs and proofs in Deduction modulo theory (iProver,

Zenon, etc.): represent classical proofs

PVS: future work

Do your own



Future work: interoperability

If A ⇒ B proved in T and A proved in T ′

prove B in T ∪ T ′

T ∪ T ′ consistent? Cut elimination?

The HTML of proofs?



Future work: reverse mathematics

A proof of 0 + x = x in a strong system (CIC, Z)

What rules are actually used?

What is the minimal theory where we can prove this?

To which system can we export this proof?



Future work: tactics

A formalization of the Cubical model of HoTT

Would be great if we had rewrite rules at the level of tactics

Can we design a better tactic language if rewriting is primitive?


